Author
Abstract
In recent years, the role ofbioinformaticsbioinformatics in supporting structural and functional genomics and the analysis of the molecules that are expressed in a cell has become fundamental for data management, interpretation, and modeling. This interdisciplinary research area provides methods that aim not only to detect and to extract information from a massive quantity of data but also to predict the structure and function of biomolecules and to model biological systems of small and medium complexity. Although bioinformatics provides a major support for experimental practice, it mainly plays a complementary role in scientific research. Indeed, bioinformatics methods are typically appropriate for large-scale analyses and cannot be replaced with experimental approaches. Specialized databases, semiautomated analyses, and data mining methods are powerful tools in performing large-scale analyses aiming to (i) obtain comprehensive collections; (ii) manage, classify, and explore the data as a whole; and (iii) derive novel features, properties, and relationships. Such methods are thus suitable for providing novel views and supporting in-depth understanding of biological system behavior and designing reliable models. The success of bioinformaticsbioinformatics approaches is directly dependent on the efficiency of data integration and on the value-added information that it produces. This is, in turn, determined by the diversity of data sources and by the quality of the annotation they are endowed with. To fulfill these requirements, we designed the computational platform ISOLA, in the framework of the International Solanaceae Genomics Project. ISOLA is an Italian genomics resource dedicated to the Solanaceae family and was conceived to collect data produced by ‘omics' technologies. Its main features and tools are presented and discussed as an example of how to convert experimental data into biological information that in turn is the basis for modeling biological systems.
Suggested Citation
Maria Luisa Chiusano & Nunzio D’Agostino & Amalia Barone & Domenico Carputo & Luigi Frusciante, 2009.
"Genome Analysis of Species of Agricultural Interest,"
Springer Optimization and Its Applications, in: Panos M. Pardalos & Petraq J. Papajorgji (ed.), Advances in Modeling Agricultural Systems, pages 385-402,
Springer.
Handle:
RePEc:spr:spochp:978-0-387-75181-8_18
DOI: 10.1007/978-0-387-75181-8_18
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-75181-8_18. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.