IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-73299-2_8.html
   My bibliography  Save this book chapter

Optimal control in high intensity focused ultrasound surgery

In: Optimization in Medicine

Author

Listed:
  • Tomi Huttunen

    (University of Kuopio)

  • Jari P. Kaipio

    (University of Kuopio)

  • Matti Malinen

    (University of Kuopio)

Abstract

Summary When an ultrasound wave is focused in biological tissue, a part of the energy of the wave is absorbed and turned into heat. This phenomena is used as a distributed heat source in ultrasound surgery, in which the aim is to destroy cancerous tissue by causing thermal damage. The main advantages of the ultrasound surgery are that it is noninvasive, there are no harmful side effects and spatial accuracy is good. The main disadvantage is that the treatment time is long for large cancer volumes when current treatment techniques are used. This is due to the undesired temperature rise in healthy tissue during the treatment. The interest for optimization of ultrasound surgery has been increased recently. With proper mathematical models and optimization algorithms the treatment time can be shortened and temperature rise in tissues can be better localized. In this study, two alternative control procedures for thermal dose optimization during ultrasound surgery are presented. In the first method, the scanning path between individual foci is optimized in order to decrease the treatment time. This method uses the prefocused ultrasound fields and predetermined focus locations. In the second method, combined feedforward and feedback controls are used to produce desired thermal dose in tissue. In the feedforward part, the phase and amplitude of the ultrasound transducers are changed as a function of time to produce the desired thermal dose distribution in tissue. The foci locations do not need to be predetermined. In addition, inequality constraint approximations for maximum input amplitude and maximum temperature can be used with the proposed method. The feedforward control is further expanded with a feedback controller which can be used during the treatment to compensate the modeling errors. All of the proposed control methods are tested with numerical simulations in 2D or 3D.

Suggested Citation

  • Tomi Huttunen & Jari P. Kaipio & Matti Malinen, 2008. "Optimal control in high intensity focused ultrasound surgery," Springer Optimization and Its Applications, in: Carlos J. S. Alves & Panos M. Pardalos & Luis Nunes Vicente (ed.), Optimization in Medicine, pages 169-195, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-73299-2_8
    DOI: 10.1007/978-0-387-73299-2_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-73299-2_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.