IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-73299-2_2.html
   My bibliography  Save this book chapter

Decomposition of matrices and static multileaf collimators: a survey

In: Optimization in Medicine

Author

Listed:
  • Matthias Ehrgott

    (The University of Auckland)

  • Horst W. Hamacher

    (Technische Universität Kaiserslautern)

  • Marc Nußbaum

    (Technische Universität Kaiserslautern)

Abstract

Summary Multileaf Collimators (MLC) consist of (currently 20-100) pairs of movable metal leaves which are used to block radiation in Intensity Modulated Radiation Therapy (IMRT). The leaves modulate a uniform source of radiation to achieve given intensity profiles. The modulation process is modeled by the decomposition of a given non-negative integer matrix into a non-negative linear combination of matrices with the (strict) consecutive ones property. In this paper we review some results and algorithms which can be used to minimize the time a patient is exposed to radiation (corresponding to the sum of coefficients in the linear combination), the set-up time (corresponding to the number of matrices used in the linear combination), and other objectives which contribute to an improved radiation therapy.

Suggested Citation

  • Matthias Ehrgott & Horst W. Hamacher & Marc Nußbaum, 2008. "Decomposition of matrices and static multileaf collimators: a survey," Springer Optimization and Its Applications, in: Carlos J. S. Alves & Panos M. Pardalos & Luis Nunes Vicente (ed.), Optimization in Medicine, pages 25-46, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-73299-2_2
    DOI: 10.1007/978-0-387-73299-2_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Z. Caner Taşkın & J. Cole Smith & H. Edwin Romeijn & James F. Dempsey, 2010. "Optimal Multileaf Collimator Leaf Sequencing in IMRT Treatment Planning," Operations Research, INFORMS, vol. 58(3), pages 674-690, June.
    2. Andreas T. Ernst & Vicky H. Mak & Luke R. Mason, 2009. "An Exact Method for the Minimum Cardinality Problem in the Treatment Planning of Intensity-Modulated Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 562-574, November.
    3. Luke Mason & Vicky Mak-Hau & Andreas Ernst, 2015. "A parallel optimisation approach for the realisation problem in intensity modulated radiotherapy treatment planning," Computational Optimization and Applications, Springer, vol. 60(2), pages 441-477, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-73299-2_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.