IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-09707-7_1.html
   My bibliography  Save this book chapter

RECSY and SCASY Library Software: Recursive Blocked and Parallel Algorithms for Sylvester-Type Matrix Equations with Some Applications

In: Parallel Scientific Computing and Optimization

Author

Listed:
  • Robert Granat

    (Umeå University)

  • Isak Jonsson

    (Umeå University)

  • Bo Kågström

    (Umeå University)

Abstract

In this contribution, we review state-of-the-art high-performance computing software for solving common standard and generalized continuous-time and discrete-time Sylvester-type matrix equations. The analysis is based on RECSY and SCASY software libraries. Our algorithms and software rely on the standard Schur method. Two ways of introducing blocking for solving matrix equations in reduced (quasi-triangular) form are reviewed. Most common is to perform a fix block partitioning of the matrices involved and rearrange the loop nests of a single-element algorithm so that the computations are performed on submatrices (matrix blocks). Another successful approach is to combine recursion and blocking. We consider parallelization of algorithms for reduced matrix equations at two levels: globally in a distributed memory paradigm, and locally on shared memory or multicore nodes as part of the distributed memory environment. Distributed wave-front algorithms are considered to compute the solution to the reduced triangular systems. Parallelization of recursive blocked algorithms is done in two ways. The simplest way is so-called implicit data parallelization, which is obtained by using SMP-aware implementations of level 3 BLAS. Complementary to this, there is also the possibility of invoking task parallelism. This is done by explicit parallelization of independent tasks in a recursion tree using OpenMP. A brief account of some software issues for the RECSY and SCASY libraries is given. Theoretical results are confirmed by experimental results.

Suggested Citation

  • Robert Granat & Isak Jonsson & Bo Kågström, 2009. "RECSY and SCASY Library Software: Recursive Blocked and Parallel Algorithms for Sylvester-Type Matrix Equations with Some Applications," Springer Optimization and Its Applications, in: Parallel Scientific Computing and Optimization, pages 3-24, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-09707-7_1
    DOI: 10.1007/978-0-387-09707-7_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-09707-7_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.