IDEAS home Printed from https://ideas.repec.org/h/spr/prochp/978-3-032-05497-5_7.html

Encoding Techniques for Digital Trace Data

Author

Listed:
  • Sylvio Barbon Junior

    (University of Trieste (UNITS), Department of Engineering and Architecture)

  • Gabriel Marques Tavares

    (LMU Munich, Database Systems and Data Mining
    Munich Center for Machine Learning (MCML))

  • Rafael Seidi Oyamada

    (University of Milan (UNIMI), Computer Science Department)

  • Paolo Ceravolo

    (University of Milan (UNIMI), Computer Science Department)

Abstract

This chapter discusses the role of encoding methods in effectively preparing trace data for a wide range of data mining tasks. By exploring the relationship between trace data and both shallow and deep learning methods, this chapter argues for a systematic exploration of the potential of encoding techniques in representing trace data. It highlights their impact on classification and prediction tasks, enabling the extraction of data-driven insights that trigger process optimization and automation. It provides an up-to-date overview of key coding techniques, their categorization, and a nuanced analysis of their specific advantages and disadvantages from different perspectives. These perspectives include effectiveness, efficiency, expressiveness, correlation power, scalability, and domain agnosticism. The selection of an appropriate approach depends on specific requirements and contextual constraints. To support this choice, we systematically compare different solutions using a memory-time projection space that categorizes coding techniques. Finally, we highlight some of the open challenges and anticipated future research directions in the field. This chapter serves as a comprehensive guide for researchers and practitioners seeking to harness the potential of trace data for improved decision-making and optimization in their respective domains.

Suggested Citation

  • Sylvio Barbon Junior & Gabriel Marques Tavares & Rafael Seidi Oyamada & Paolo Ceravolo, 2026. "Encoding Techniques for Digital Trace Data," Progress in IS,, Springer.
  • Handle: RePEc:spr:prochp:978-3-032-05497-5_7
    DOI: 10.1007/978-3-032-05497-5_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prochp:978-3-032-05497-5_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.