IDEAS home Printed from https://ideas.repec.org/h/spr/prochp/978-3-031-46902-2_1.html
   My bibliography  Save this book chapter

Reviewing Explainable Artificial Intelligence Towards Better Air Quality Modelling

In: Advances and New Trends in Environmental Informatics 2023

Author

Listed:
  • Thomas Tasioulis

    (Aristotle University of Thessaloniki)

  • Kostas Karatzas

    (Aristotle University of Thessaloniki)

Abstract

The increasing complexity of machine learning models used in environmental studies necessitates robust tools for transparency and interpretability. This paper systematically explores the transformative potential of Explainable Artificial Intelligence (XAI) techniques within the field of air quality research. A range of XAI methodologies, including Permutation Feature Importance (PFI), Partial Dependence Plot (PDP), SHapley Additive exPlanations (SHAP), and Local Interpretable Model-Agnostic Explanations (LIME), have been effectively investigated to achieve robust, comprehensible outcomes in modeling air pollutant concentrations worldwide. The integration of advanced feature engineering, visual analytics, and methodologies like DeepLIFT and Layer-Wise Relevance Propagation further enhance the interpretability and reliability of deep learning models. Despite these advancements, a significant proportion of air quality research still overlooks the implementation of XAI techniques, resulting in biases and redundancies within datasets. This review highlights the pivotal role of XAI techniques in facing these challenges, thus promoting precision, transparency, and trust in complex models. Furthermore, it underscores the necessity for a continued commitment to the integration and development of XAI techniques, pushing the boundaries of our understanding and usability of Artificial Intelligence in environmental science. The comprehensive insights offered by XAI can significantly aid in decision-making processes and lead to transformative strides within the fields of Internet of Things and air quality research.

Suggested Citation

  • Thomas Tasioulis & Kostas Karatzas, 2024. "Reviewing Explainable Artificial Intelligence Towards Better Air Quality Modelling," Progress in IS, in: Volker Wohlgemuth & Dieter Kranzlmüller & Maximilian Höb (ed.), Advances and New Trends in Environmental Informatics 2023, pages 3-19, Springer.
  • Handle: RePEc:spr:prochp:978-3-031-46902-2_1
    DOI: 10.1007/978-3-031-46902-2_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prochp:978-3-031-46902-2_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.