IDEAS home Printed from https://ideas.repec.org/h/spr/oprchp/978-3-319-55702-1_33.html
   My bibliography  Save this book chapter

Particle-Image Velocimetry and the Assignment Problem

In: Operations Research Proceedings 2016

Author

Listed:
  • Franz-Friedrich Butz

    (Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg)

  • Armin Fügenschuh

    (Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg)

  • Jens Nikolas Wood

    (Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg)

  • Michael Breuer

    (Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg)

Abstract

The Particle-Image Velocimetry (PIV) is a standard optical contactless measurement technique to determine the velocity field of a fluid flow for example around an obstacle such as an airplane wing. Tiny density neutral and light-reflecting particles are added to the otherwise invisible fluid flow. Then two consecutive images (A and B) of a thin laser illuminated light sheet are taken by a CCD camera with a time-lag of a few milliseconds. From these two images one tries to estimate the local shift of the particles, for which it is common to use a cross-correlation function. Based on the displacement of the tracers and the time-lag, the local velocities can be determined. This method requires a high level of experience by its user, fine tuning of several parameters, and multiple pre- and post-processing steps of the data in order to obtain meaningful results. We present a new approach that is based on the matching problem in bipartite graphs. Ideally, each particle in image A is assigned to exactly one particle in image B, and in an optimal assignment, the sum of shift distances of all particles in A to particles in B is minimal. However, the real-world situation is far from being ideal, because of inhomogeneous particle sizes and shapes, inadequate illumination of the images, or particle losses due to a divergence out of the two-dimensional light sheet area into the surrounding three-dimensional space, to name just a few sources of imperfection. Our new method is implemented in MATLAB with a graphical user interface. We evaluate and compare it with the cross-correlation method using real measured data. We demonstrate that our new method requires less interaction with the user, no further post-processing steps, and produces less erroneous results. This article is based on the master thesis [5], written by the first coauthor, and supervised by all other coauthors.

Suggested Citation

  • Franz-Friedrich Butz & Armin Fügenschuh & Jens Nikolas Wood & Michael Breuer, 2018. "Particle-Image Velocimetry and the Assignment Problem," Operations Research Proceedings, in: Andreas Fink & Armin Fügenschuh & Martin Josef Geiger (ed.), Operations Research Proceedings 2016, pages 243-249, Springer.
  • Handle: RePEc:spr:oprchp:978-3-319-55702-1_33
    DOI: 10.1007/978-3-319-55702-1_33
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-319-55702-1_33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.