IDEAS home Printed from https://ideas.repec.org/h/spr/nrmchp/978-3-030-13487-7_9.html
   My bibliography  Save this book chapter

Estimating Field-Level Rotations as Dynamic Cycles

In: Applied Methods for Agriculture and Natural Resource Management

Author

Listed:
  • Duncan MacEwan

    (ERA Economics)

  • Richard E. Howitt

    (ERA Economics
    University of California at Davis)

Abstract

Crop rotation systems are an important part of agricultural production for managing pests, diseases, and soil fertility. Recent interest in sustainable agriculture focuses on low input-use practices which require knowledge of the underlying dynamics of production and rotation systems. Policies to limit chemical application depending on proximity to waterways and flood management require field-level data and analysis. Additionally, many supply estimates of crop production omit the dynamic effects of crop rotations. We estimate a dynamic programming model of crop rotation which incorporates yield and cost intertemporal effects in addition to field-specific factors including salinity and soil quality. Using an Optimal Matching algorithm from the Bioinformatics literature, we determine empirically observed rotations using a geo-referenced panel dataset of 14,000 fields over 13 years. We estimate the production parameters which satisfy the Euler equations of the field-level rotation problem and solve an empirically observed four-crop rotation.

Suggested Citation

  • Duncan MacEwan & Richard E. Howitt, 2019. "Estimating Field-Level Rotations as Dynamic Cycles," Natural Resource Management and Policy, in: Siwa Msangi & Duncan MacEwan (ed.), Applied Methods for Agriculture and Natural Resource Management, chapter 0, pages 145-169, Springer.
  • Handle: RePEc:spr:nrmchp:978-3-030-13487-7_9
    DOI: 10.1007/978-3-030-13487-7_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nrmchp:978-3-030-13487-7_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.