IDEAS home Printed from https://ideas.repec.org/h/spr/lnopch/978-981-16-8656-6_6.html
   My bibliography  Save this book chapter

Thick Data Analytics for Small Training Samples Using Siamese Neural Network and Image Augmentation

In: Liss 2021

Author

Listed:
  • Jinan Fiaidhi

    (Lakehead University)

  • Darien Sawyer

    (Lakehead University)

  • Sabah Mohammed

    (Lakehead University)

Abstract

Although machine learning and deep learning has provided solutions and effective predictions to a variety of complex tasks, it requires to be trained with large amount of labeled data in order to make the learning models perform with high accuracy. In many applications such as in healthcare and medical imaging, collecting big amount of data is sometimes not feasible. Thick data analytics is an attempt to solve this challenge by incorporating additional qualitative interventions such as involving expert’s heuristics to annotate and augment the training data. In this article, we are embarking on an investigation to involve the heuristics of a human radiologist in identifying COVID-19 few cases of CT-Scans imaging through the use of groups of image annotation and augmentation techniques. The identification of new COVID-19 is carried out utilizing unique structure Siamese network to rank similarity between new COVID-19 CT Scan images and images determined as COVID provided by the radiologist. The Siamese network extracts the features of the augmented images compared to the new CT-Scan image to determine whether the new image is COVID-19 positive using a similarity ratio. The results show that the proposed model of using the augmentation heuristics trained on small dataset outperforms the advanced models that are trained on datasets containing large numbers of samples. This article starts by answering key questions on why we need CT-Scans for COVID-19 diagnosis and what is the notion of Thick Data and the use of image augmentation as heuristics as well as what is the role of Siamese Neural Network in learning from small samples. Based on answering these questions, the analytics method described in this paper will have better justification.

Suggested Citation

  • Jinan Fiaidhi & Darien Sawyer & Sabah Mohammed, 2022. "Thick Data Analytics for Small Training Samples Using Siamese Neural Network and Image Augmentation," Lecture Notes in Operations Research, in: Xianliang Shi & Gábor Bohács & Yixuan Ma & Daqing Gong & Xiaopu Shang (ed.), Liss 2021, pages 57-66, Springer.
  • Handle: RePEc:spr:lnopch:978-981-16-8656-6_6
    DOI: 10.1007/978-981-16-8656-6_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnopch:978-981-16-8656-6_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.