IDEAS home Printed from https://ideas.repec.org/h/spr/lnopch/978-3-031-58405-3_67.html
   My bibliography  Save this book chapter

Inverse-Optimization-Based Uncertainty Set for Robust Linear Optimization

In: Operations Research Proceedings 2023

Author

Listed:
  • Ayaka Ueta

    (Tokyo Institute of Technology)

  • Mirai Tanaka

    (The Institute of Statistical Mathematics
    Continuous Optimization Team, RIKEN Center for Advanced Intelligence Project)

  • Ken Kobayashi

    (Tokyo Institute of Technology)

  • Kazuhide Nakata

    (Tokyo Institute of Technology)

Abstract

We consider solving linear optimization (LO) problems with uncertain objective coefficients. For such problems, we often employ robust optimization (RO) approaches by introducing an uncertainty set for the unknown coefficients. Typical RO approaches require observations or prior knowledge of the unknown coefficient to define an appropriate uncertainty set. However, such information may not always be available in practice. In this study, we propose a novel uncertainty set for robust linear optimization (RLO) problems without prior knowledge of the unknown coefficients. Instead, we assume to have data of known constraint parameters and corresponding optimal solutions. Specifically, we derive an explicit form of the uncertainty set as a polytope by applying techniques of inverse optimization (IO). We prove that the RLO problem with the proposed uncertainty set can be equivalently reformulated as an LO problem. Numerical experiments show that the RO approach with the proposed uncertainty set outperforms classical IO in terms of performance stability.

Suggested Citation

  • Ayaka Ueta & Mirai Tanaka & Ken Kobayashi & Kazuhide Nakata, 2025. "Inverse-Optimization-Based Uncertainty Set for Robust Linear Optimization," Lecture Notes in Operations Research, in: Guido Voigt & Malte Fliedner & Knut Haase & Wolfgang Brüggemann & Kai Hoberg & Joern Meissner (ed.), Operations Research Proceedings 2023, chapter 0, pages 527-533, Springer.
  • Handle: RePEc:spr:lnopch:978-3-031-58405-3_67
    DOI: 10.1007/978-3-031-58405-3_67
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnopch:978-3-031-58405-3_67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.