IDEAS home Printed from https://ideas.repec.org/h/spr/lnopch/978-3-031-58405-3_63.html
   My bibliography  Save this book chapter

Consistent Flow Scenario Generation Based on Open Data for Operational Analysis of European Gas Transport Networks

In: Operations Research Proceedings 2023

Author

Listed:
  • Inci Yueksel-Erguen

    (Zuse Institute Berlin)

  • Thorsten Koch

    (Zuse Institute Berlin
    Technische Universität Berlin)

  • Janina Zittel

    (Zuse Institute Berlin)

Abstract

In recent years, European gas transport has been affected by major disruptive events like political issues such as, most recently, the Russian war on Ukraine. To incorporate the impacts of such events into decision-making during the energy transition, more complex models for gas network analysis are required. However, the limited availability of consistent data presents a significant obstacle in this endeavor. We use a mathematical-modeling-based scenario generator to deal with this obstacle. The scenario generator consists of capacitated network flow models representing the gas network at different aggregation levels. In this study, we present the coarse-to-fine approach utilized in this scenario generator.

Suggested Citation

  • Inci Yueksel-Erguen & Thorsten Koch & Janina Zittel, 2025. "Consistent Flow Scenario Generation Based on Open Data for Operational Analysis of European Gas Transport Networks," Lecture Notes in Operations Research, in: Guido Voigt & Malte Fliedner & Knut Haase & Wolfgang Brüggemann & Kai Hoberg & Joern Meissner (ed.), Operations Research Proceedings 2023, chapter 0, pages 493-499, Springer.
  • Handle: RePEc:spr:lnopch:978-3-031-58405-3_63
    DOI: 10.1007/978-3-031-58405-3_63
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnopch:978-3-031-58405-3_63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.