IDEAS home Printed from https://ideas.repec.org/h/spr/lnichp/978-3-031-80119-8_28.html
   My bibliography  Save this book chapter

Selecting Appropriate Process Models for IT Projects: Towards a Tool-Supported Decision Approach

Author

Listed:
  • Michael Dominic Harr

    (University of Duisburg-Essen)

  • Sarah Seufert

    (University of Duisburg-Essen)

Abstract

The appropriate selection of suitable process models plays an important role for IT project success. To aid in decision-making, IT project management literature offers a plethora of decision models for selecting suitable process models, however, hybrid process models are often neglected and adoption in practice is low or non-existent. To address this challenge, we draw on contingency theory to develop and implement a tool-supported decision model for the selection and evaluation of appropriate process models for IT projects, thereby leveraging artificial intelligence and machine learning in the context of a self-enforcing network. Our model provides an objective tool to assess process model suitability. Results from a conducted online survey with project management experts indicate high validity. Therefore, we contribute to the field of IT project management by expanding AI-based decision models for selecting and evaluating process models through extending the range of covered models and implementing inherent weighting of criteria.

Suggested Citation

  • Michael Dominic Harr & Sarah Seufert, 2025. "Selecting Appropriate Process Models for IT Projects: Towards a Tool-Supported Decision Approach," Lecture Notes in Information Systems and Organization,, Springer.
  • Handle: RePEc:spr:lnichp:978-3-031-80119-8_28
    DOI: 10.1007/978-3-031-80119-8_28
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnichp:978-3-031-80119-8_28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.