IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-540-85646-7_3.html
   My bibliography  Save this book chapter

Optimality of the Methods for Approximating the Feasible Criterion Set in the Convex Case

In: Multiobjective Programming and Goal Programming

Author

Listed:
  • Roman Efremov

    (Rey Juan Carlos University)

  • Georgy Kamenev

Abstract

Estimation Refinement (ER) is an adaptive method for polyhedral approximations of multidimensional convex sets. ER is used in the framework of the Interactive Decision Maps (IDM) technique that provides interactive visualization of the Pareto frontier for convex sets of feasible criteria vectors. We state that, for ER, the number of facets of approximating polytopes is asymptotically multinomial of an optimal order. Furthermore, the number of support function calculations, needed to be resolved during the approximation, and which complexity is unknown beforehand since a user of IDM provides his own optimization algorithm, is bounded from above by a linear function of the number of iterations.

Suggested Citation

  • Roman Efremov & Georgy Kamenev, 2009. "Optimality of the Methods for Approximating the Feasible Criterion Set in the Convex Case," Lecture Notes in Economics and Mathematical Systems, in: Vincent Barichard & Matthias Ehrgott & Xavier Gandibleux & Vincent T'Kindt (ed.), Multiobjective Programming and Goal Programming, pages 25-33, Springer.
  • Handle: RePEc:spr:lnechp:978-3-540-85646-7_3
    DOI: 10.1007/978-3-540-85646-7_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-540-85646-7_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.