IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-540-48271-0_9.html
   My bibliography  Save this book chapter

A Distributed System for Collaboration and Control of UAV Groups: Experiments and Analysis

In: Cooperative Systems

Author

Listed:
  • Mark F. Godwin

    (University of California)

  • Stephen C. Spry

    (University of California)

  • J. Karl Hedrick

    (University of California)

Abstract

Summary This chapter describes a distributed system for collaboration and control of a group of unmanned aerial vehicles (UAVs). The system allows a group of vehicles to work together to accomplish a mission via an allocation mechanism that works with a limited communication range and is tolerant to agent failure. This system could be used in a number of applications including mapping, surveillance, search and rescue operations. The user provides a mission plan containing a set of tasks and an obstacle map of the operating environment. An estimated mission state, described in a high level language, is maintained on each agent and shared between agents whenever possible. This language represents each task as a set of subtasks. Each subtask maintains a state with information on the subtask status, an agent ID, a timestamp, and the cost to complete the subtask. The estimated mission states are based on each agent’s current knowledge of the mission and are updated whenever new information becomes available. In this chapter, each subtask is associated with a point in space, although the system methodology can be expanded to more general subtask types. The agents employ a three-layer hierarchical decision and control process. The upper layer contains transition logic and a communication process. The transition logic manages transitions between tasks and between subtasks, which determine the behavior of the agent at any given time. The communication process manages the exchange of mission state information between agents. Among other capabilities, the subtask transition rules provide time-based fault management; if an agent is disabled or stops communicating, others will assume its subtask after a mission-dependent timeout period. The middle layer contains a trajectory planner that uses a modified potential field method to generate a safe trajectory for a UAV based on the obstacle map and the current subtask objective. The lower layer contains a trajectory-tracking controller that produces heading and airspeed commands for the UAV. Properties of the system are analyzed and the methodology is illustrated through an example mission simulation.

Suggested Citation

  • Mark F. Godwin & Stephen C. Spry & J. Karl Hedrick, 2007. "A Distributed System for Collaboration and Control of UAV Groups: Experiments and Analysis," Lecture Notes in Economics and Mathematical Systems, in: Don Grundel & Robert Murphey & Panos Pardalos & Oleg Prokopyev (ed.), Cooperative Systems, pages 139-156, Springer.
  • Handle: RePEc:spr:lnechp:978-3-540-48271-0_9
    DOI: 10.1007/978-3-540-48271-0_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-540-48271-0_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.