IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-540-48271-0_21.html
   My bibliography  Save this book chapter

Information Flow Requirements for the Stability of Motion of Vehicles in a Rigid Formation

In: Cooperative Systems

Author

Listed:
  • Sai Krishna Yadlapalli

    (Texas A&M University)

  • Swaroop Darbha

    (Texas A&M University)

  • Kumbakonam R. Rajagopal

    (Texas A&M University)

Abstract

Summary It is known in the literature on Automated Highway Systems that information flow can significantly affect the propagation of errors in spacing in a collection of vehicles. This chapter investigates this issue further for a homogeneous collection of vehicles, where in the motion of each vehicle is modeled as a point mass and is digitally controlled. The structure of the controller employed by the vehicles is as follows: $$ U_i (z) = C(z)\sum\nolimits_{j \in S_i } {(X_i - X_j - \tfrac{{L_{ij} z}} {{z - 1}})} $$ , where U i(z) is the (z- transformation of) control action for the i th vehicle, X i is the position of the i th vehicle, L ij is the desired distance between the i th and the j th vehicles in the collection, C(z) is the discrete transfer function of the controller and S i is the set of vehicles that the i th vehicle can communicate with directly. This chapter further assumes that the information flow is undirected, i.e., i ∈ S j ⇔ j ∈ S i and the information flow graph is connected. We consider information flow in the collection, where each vehicle can communicate with a maximum of q(n) vehicles. We allow q(n) to vary with the size n of the collection. We first show that C(z) cannot have any zeroes at z = 1 to ensure that relative spacing is maintained in response to a reference vehicle making a maneuver where its velocity experiences a steady state offset. We then show that if the control transfer function C(z) has one or more poles located at z = 1, then the motion of the collection of vehicles will become unstable if the size of the collection is sufficiently large. These two results imply that C(1) ≠ 0 and C(1) must be well defined. We further show that if q(n)/n → 0 as n → ∞ then there is a low frequency sinusoidal disturbance of at most unit amplitude acting on each vehicle such that the maximum error in spacing response increase at least as $$ \Omega \left( {\sqrt {\tfrac{{n^3 }} {{q^3 (n)}}} } \right) $$ . A consequence of the results presented in this chapter is that the maximum of the error in spacing and velocity of any vehicle can be made insensitive to the size of the collection only if there is at least one vehicle in the collection that communicates with at least Ω(n) other vehicles in the collection. We also show that there can be at most one vehicle that communicates with Ω(n) vehicles and that any other vehicle in the collection can only communicate with at most p vehicles, where p depends only on the chosen controller and the its sampling time.

Suggested Citation

  • Sai Krishna Yadlapalli & Swaroop Darbha & Kumbakonam R. Rajagopal, 2007. "Information Flow Requirements for the Stability of Motion of Vehicles in a Rigid Formation," Lecture Notes in Economics and Mathematical Systems, in: Don Grundel & Robert Murphey & Panos Pardalos & Oleg Prokopyev (ed.), Cooperative Systems, pages 351-367, Springer.
  • Handle: RePEc:spr:lnechp:978-3-540-48271-0_21
    DOI: 10.1007/978-3-540-48271-0_21
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-540-48271-0_21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.