IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-319-47766-4_17.html
   My bibliography  Save this book chapter

Near-Optimal Switching Strategies for a Tandem Queue

In: Markov Decision Processes in Practice

Author

Listed:
  • Daphne Leeuwen

    (CWI)

  • Rudesindo Núñez-Queija

    (CWI)

Abstract

Motivated by various applications in logistics, road traffic and production management, we investigate two versions of a tandem queueing model in which the service rate of the first queue can be controlled. The objective is to keep the mean number of jobs in the second queue as low as possible, without compromising the total system delay (i.e. avoiding starvation of the second queue). The balance between these objectives is governed by a linear cost function of the queue lengths. In the first model, the server in the first queue can be either switched on or off, depending on the queue lengths of both queues. This model has been studied extensively in the literature. Obtaining the optimal control is known to be computationally intensive and time consuming. We are particularly interested in the scenario that the first queue can operate at larger service speed than the second queue. This scenario has received less attention in literature. We propose an approximation using an efficient mathematical analysis of a near-optimal threshold policy based on a matrix-geometric solution of the stationary probabilities that enables us to compute the relevant stationary measures more efficiently and determine an optimal choice for the threshold value. In some of our target applications, it is more realistic to see the first queue as a (controllable) batch-server system. We follow a similar approach as for the first model and obtain the structure of the optimal policy as well as an efficiently computable near-optimal threshold policy. We illustrate the appropriateness of our approximations using simulations of both models.

Suggested Citation

  • Daphne Leeuwen & Rudesindo Núñez-Queija, 2017. "Near-Optimal Switching Strategies for a Tandem Queue," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. van Dijk (ed.), Markov Decision Processes in Practice, chapter 0, pages 439-459, Springer.
  • Handle: RePEc:spr:isochp:978-3-319-47766-4_17
    DOI: 10.1007/978-3-319-47766-4_17
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-319-47766-4_17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.