IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-031-32013-2_9.html
   My bibliography  Save this book chapter

Causally Explainable Decision Recommendations Using Causal Artificial Intelligence

In: AI-ML for Decision and Risk Analysis

Author

Listed:
  • Louis Anthony Cox Jr.

    (Cox Associates and University of Colorado)

Abstract

For an AI agent to make trustworthy decision recommendations under uncertainty on behalf of human principals, it should be able to explain why its recommended decisions make preferred outcomes more likely and what risks they entail. Such rationales use causal models to link potential courses of action to resulting outcome probabilities. They reflect an understanding of possible actions, preferred outcomes, effects of action on outcome probabilities, and acceptable risks and trade-offs—the standard ingredients of normative theories of decision-making under uncertainty, such as expected utility theory. Competent AI advisory systems should also notice changes that might affect a user’s plans and goals. In response, they should apply both learned patterns for quick response (analogous to fast, intuitive “System 1” decision-making in human psychology) and also slower causal inference and simulation, decision optimization, and planning algorithms (analogous to deliberative “System 2” decision-making in human psychology) to decide how best to respond to changing conditions. Concepts of conditional independence, conditional probability tables (CPTs) or models, causality, heuristic search for optimal plans, uncertainty reduction, and value of information (VoI) provide a rich, principled framework for recognizing and responding to relevant changes and features of decision problems via both learned and calculated responses. This chapter reviews how these and related concepts can be used to identify probabilistic causal dependencies among variables, detect changes that matter for achieving goals, represent them efficiently to support responses on multiple time scales, and evaluate and update causal models and plans in light of new data. The resulting causally explainable decisions make efficient use of available information to achieve goals in uncertain environments.

Suggested Citation

  • Louis Anthony Cox Jr., 2023. "Causally Explainable Decision Recommendations Using Causal Artificial Intelligence," International Series in Operations Research & Management Science, in: AI-ML for Decision and Risk Analysis, chapter 0, pages 273-316, Springer.
  • Handle: RePEc:spr:isochp:978-3-031-32013-2_9
    DOI: 10.1007/978-3-031-32013-2_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-031-32013-2_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.