Author
Listed:
- Jesús T. Pastor
(Universidad Miguel Hernandez de Elche)
- Juan Aparicio
(Universidad Miguel Hernandez de Elche)
- José L. Zofío
(Universidad Autónoma de Madrid)
Abstract
This chapter is concerned with the measurement of profitability efficiency, defined as the ratio of revenue to cost, and its multiplicative decomposition into a productive efficiency measure—including technical and scale efficiencies, corresponding to the generalized distance function introduced by Chavas and Cox (1999), and allocative efficiency. The generalized distance function, GDF, received such name by these authors because it generalizes Shepard’s radial distance functions and the graph (hyperbolic) efficiency measure introduced by Färe et al. (1985:110–111). Building upon this measure, which can be reinterpreted in terms of a distance function, these authors extended the input- and output-oriented measures to a graph representation of the technology including both dimensions of the production technology. In contrast to the partial dimensions represented by input and output orientations, the hyperbolic technical efficiency measure, presented in Sect 2.1.3 of Chap. 2 , is a scalar value function that projects the firm under evaluation to the production frontier by simultaneously reducing its inputs and increasing its outputs. As we show below, Chavas and Cox (1999) qualified this definition by making these changes dependent on an exponent that weights the outputs and inputs differently. Therefore, setting the value of such bearing (or directional) parameter to a specific value, it is possible to recover, among others, the hyperbolic efficiency measure as well as Farrell’s input and output radial counterparts. Since the latter corresponds to Shepard’s input and output distance functions, as shown in Chap. 3 , the generalized distance function represents an improvement over the previous definitions, by adding flexibility to the orientation and as we show below providing a dual counterpart to the profitability function.
Suggested Citation
Jesús T. Pastor & Juan Aparicio & José L. Zofío, 2022.
"The Generalized Distance Function (GDF): Profitability Efficiency Decomposition,"
International Series in Operations Research & Management Science, in: Benchmarking Economic Efficiency, chapter 0, pages 167-212,
Springer.
Handle:
RePEc:spr:isochp:978-3-030-84397-7_4
DOI: 10.1007/978-3-030-84397-7_4
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-84397-7_4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.