IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-030-57358-4_1.html
   My bibliography  Save this book chapter

Scientific Method for Health Risk Analysis: The Example of Fine Particulate Matter Air Pollution and COVID-19 Mortality Risk

In: Quantitative Risk Analysis of Air Pollution Health Effects

Author

Listed:
  • Louis Anthony Cox Jr.

    (Cox Associates and University of Colorado)

Abstract

Applied science is largely about how to use observations to learn, express, and verify predictive generalizations—causal laws stating that if certain antecedent conditions hold, then certain consequences will follow. Non-deterministic or incompletely known causal laws may only determine conditional probabilities or occurrence rates for consequences from known conditions (Spirtes 2010). For example, different exposure concentrations of air pollution might cause different mortality incidence rates or age-specific hazard rates for people with different values of causally relevant covariates. A defining characteristic of sound science is that causal laws and their predictions are formulated and expressed unambiguously, using clear operational definitions, so that they can be independently tested and verified by others and empirically confirmed, refuted, or refined as needed using new data as it becomes available. Comparing unambiguous predictions to observations (using statistics if the predictions are probabilistic) determines the extent to which they are empirically supported. The authority of valid scientific conclusions rests on their testability, potential falsifiability, and empirically demonstrated predictive validity when tested. Using new data to constantly question, test, verify, and if necessary correct and refine previous predictive generalizations, and wider theories and networks of assumptions into which they may fit, is a hallmark of sound science. Its practical benefit in risk analysis is better understanding of what truly protects people, and what does not—for example, the unexpected discovery that administering retinol and beta carotene to subjects at risk of lung cancer increased risk instead of decreasing it (Omenn et al. 1996; Goodman et al. 2004).

Suggested Citation

  • Louis Anthony Cox Jr., 2021. "Scientific Method for Health Risk Analysis: The Example of Fine Particulate Matter Air Pollution and COVID-19 Mortality Risk," International Series in Operations Research & Management Science, in: Quantitative Risk Analysis of Air Pollution Health Effects, edition 1, chapter 0, pages 3-26, Springer.
  • Handle: RePEc:spr:isochp:978-3-030-57358-4_1
    DOI: 10.1007/978-3-030-57358-4_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-57358-4_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.