Author
Abstract
A general three-point elicitation model is proposed for eliciting distributions from experts. Specifically, lower and upper quantile estimates and a most likely estimate in between these quantile estimates are to be elicited, which uniquely determine a member in a flexible family of distributions that is consistent with these estimates. Multiple expert elicited lifetime distributions in this manner are next used to arrive at the prior parameters of a Dirichlet Process (DP) describing uncertainty in a lifetime distribution. That lifetime distribution is needed in a preventive maintenance context to establish an optimal maintenance interval or a range thereof. In practical settings with an effective preventive maintenance policy, the statistical estimation of such a lifetime distribution is complicated due to a lack of failure time data despite a potential abundance of right-censored data, i.e., survival data up to the time the component was preventively maintained. Since the Bayesian paradigm is well suited to deal with scarcity of data, the formulated prior DP above is updated using all available failure time and right-censored maintenance data in a Bayesian fashion. Multiple posterior lifetime distribution estimates can be obtained from this DP update, including, e.g., its posterior expectation and median. A plausible range for the optimal time-based maintenance interval can be established graphically by plotting the long-term average cost per unit time of a block replacement model for multiple posterior lifetime distribution estimates as a function of the preventive maintenance frequency. An illustrative example is utilized throughout the paper to exemplify the proposed approach.
Suggested Citation
J. René Dorp & Thomas A. Mazzuchi, 2021.
"Three-Point Lifetime Distribution Elicitation for Maintenance Optimization in a Bayesian Context,"
International Series in Operations Research & Management Science, in: Anca M. Hanea & Gabriela F. Nane & Tim Bedford & Simon French (ed.), Expert Judgement in Risk and Decision Analysis, chapter 0, pages 147-177,
Springer.
Handle:
RePEc:spr:isochp:978-3-030-46474-5_6
DOI: 10.1007/978-3-030-46474-5_6
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-46474-5_6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.