IDEAS home Printed from https://ideas.repec.org/h/spr/innchp/978-3-031-92184-1_7.html
   My bibliography  Save this book chapter

Machine Learning Get Ready to Measure the Value for Supply Chain Management

In: Building Cloud Software Products

Author

Listed:
  • Ute Riemann

    (BT&A EMEA, SAP)

  • Thomas Ochs

    (CIO Villeroy & Boch)

Abstract

Machine learning (ML) isn’t a solitary endeavour of IT but is having a dramatic impact on the way we can perform business processes. It is one of the quickest expanding areas within the area of artificial intelligence (AI) (Jordan & Mitchell, Science, 349(6245), 255–260, 2015) justified by the high productivity growth promised by these technologies, coupled with the explosive increase of data amounts and the growing availability of low-cost computing power and data storage required to use ML (Court et al., Big data, analytics, and the future of marketing & sales. McKinsey & Company Marketing & Sales Paper, March 2015; Jordan & Mitchell, Science, 349(6245), 255–260, 2015; Wess, Mit Künstlicher Intelligenz immer die richtigen Entscheidungen treffen. In P. Buxmann & H. Schmidt (Eds.), Künstliche Intelligenz: Mit Algorithmen zum wirtschaftlichen Erfolg (pp. 143–159). Springer, 2019). ML is so important because it helps using data to a greater value to drive business rule and logic. Already in the 1950s and 1960s the terms AI, ML, pattern recognition and game playing were used in connection with intelligent computers. Methods such as neural networks were also already well known (Minsky, Proceedings of the IRE, 49(1), 8–30, 1961; 20; Samuel, IBM Journal of Research and Development, 3(3), 210–229, 1959). Due to the rapid progress of technology at lower cost, this interest is renewed as big data can now be processed (Jordan & Mitchell, Science, 349(6245), 255–260, 2015; Wess, Mit Künstlicher Intelligenz immer die richtigen Entscheidungen treffen. In P. Buxmann & H. Schmidt (Eds.), Künstliche Intelligenz: Mit Algorithmen zum wirtschaftlichen Erfolg (pp. 143–159). Springer, 2019) and algorithms concerning neural networks and deep learning evolved (Streibich & Zeller, Offene Plattformen als Erfolgsfaktoren für Künstliche Intelligenz. In P. Buxmann & H. Schmidt (Eds.), Künstliche Intelligenz: Mit Algorithmen zum wirtschaftlichen Erfolg (pp. 107–117). Springer, 2019). The initial value of machine learning is that it allows you to continually learn from data and predict the future. With the emergence of digital tools and communications and thus the increase of data volumes, the benefit of ML further enhances—this is of relevance as well in the production and product development where intelligent production machines and smart products constantly produce relevant data (Buxmann & Schmidt, Künstliche Intelligenz: Mit Algorithmen zum wirtschaftlichen Erfolg. Springer Gabler, 2019a; Cheatham et al., McKinsey on Risk - Transforming Risk Efficiency and Effectiveness, 7, 27–34, 2019; Fink, Quick Guide KI-Projekte – einfach machen: Künstliche Intelligenz in Service, Marketing und Sales erfolgreich einführen, Springer Fachmedien Wiesbaden, 2020, S. VI, Mainzer, Künstliche Intelligenz—Wann übernehmen die Maschinen? Springer, 2016; Leukert et al., Das intelligente Unternehmen: Maschinelles Lernen mit SAP zielgerichtet einsetzen. In P. Buxmann & H. Schmidt (Eds.), Künstliche Intelligenz: Mit Algorithmen zum wirtschaftlichen Erfolg (pp. 41–62). Springer, 2019). From the business perspective it is not just the matter of generating huge quantities of data, but also of converting this data into new knowledge and gaining new insights into business processes, which in turn can lead to better decisions (Mainzer, Künstliche Intelligenz—Wann übernehmen die Maschinen? Springer, 2016; Streibich & Zeller, Offene Plattformen als Erfolgsfaktoren für Künstliche Intelligenz. In P. Buxmann & H. Schmidt (Eds.), Künstliche Intelligenz: Mit Algorithmen zum wirtschaftlichen Erfolg (pp. 107–117). Springer, 2019) and led to fundamental changes due to technological innovations (Leukert et al., Das intelligente Unternehmen: Maschinelles Lernen mit SAP zielgerichtet einsetzen. In P. Buxmann & H. Schmidt (Eds.), Künstliche Intelligenz: Mit Algorithmen zum wirtschaftlichen Erfolg (pp. 41–62). Springer, 2019; Preuss, In-Memory-Datenbank SAP HANA. Springer Fachmedien Wiesbaden, 2017; Wuest et al., Production and Manufacturing Research, 4(1), 23–45, 2016) leading to less repetitive and more innovative activities, e.g. within product management (Wellers et al., Why machine learning and why now? [White Paper]. SAP SE, 2017). Machine learning is dominating conversations about how emerging advanced analytics can provide businesses with a competitive advantage to the business. The following article now aims to answer the question what value these powerful set of algorithms and models can be delivered to the process of product management and how the value can be measured to justify the usage of ML technology. Coming from the end-to-end process view and the relevant KPIs, the following article outlines a methodology to quantify and measure the effects of ML while gain insights into patterns and anomalies within data and thus improving processes has.

Suggested Citation

  • Ute Riemann & Thomas Ochs, 2025. "Machine Learning Get Ready to Measure the Value for Supply Chain Management," Innovation, Technology, and Knowledge Management, in: Yasin Hajizadeh & Alexander Poth & Andreas Riel (ed.), Building Cloud Software Products, chapter 0, pages 111-128, Springer.
  • Handle: RePEc:spr:innchp:978-3-031-92184-1_7
    DOI: 10.1007/978-3-031-92184-1_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:innchp:978-3-031-92184-1_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.