IDEAS home Printed from https://ideas.repec.org/h/spr/conchp/978-3-7908-2050-8_7.html
   My bibliography  Save this book chapter

Risk Measures for Portfolio Vectors and Allocation of Risks

In: Risk Assessment

Author

Listed:
  • Ludger Rüschendorf

    (University of Freiburg)

Abstract

In this paper we survey some recent developments on risk measures for port¬folio vectors and on the allocation of risk problem. The main purpose to study risk measures for portfolio vectors X = (X1, …, Xd) is to measure not only the risk of the marginals separately but to measure the joint risk of Xcaused by the variation of the components and their possible dependence. Thus an important property of risk measures for portfolio vectors is con¬sistency with respect to various classes of convex and dependence orderings. It turns out that axiomatically defined convex risk measures are consistent w.r.t. multivariate convex ordering. Two types of examples of risk measures for portfolio measures are introduced and their consistency properties are in¬vestigated w.r.t. various types of convex resp. dependence orderings.

Suggested Citation

  • Ludger Rüschendorf, 2009. "Risk Measures for Portfolio Vectors and Allocation of Risks," Contributions to Economics, in: Georg Bol & Svetlozar T. Rachev & Reinhold Würth (ed.), Risk Assessment, pages 153-164, Springer.
  • Handle: RePEc:spr:conchp:978-3-7908-2050-8_7
    DOI: 10.1007/978-3-7908-2050-8_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:conchp:978-3-7908-2050-8_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.