IDEAS home Printed from https://ideas.repec.org/h/spr/adspcp/978-3-642-02664-5_2.html
   My bibliography  Save this book chapter

Discovery of Intrinsic Clustering in Spatial Data

In: Knowledge Discovery in Spatial Data

Author

Listed:
  • Yee Leung

    (The Chinese University of Hong Kong)

Abstract

A fundamental task in knowledge discovery is the unraveling of clusters intrinsically formed in spatial databases. These clusters can be natural groups of variables, data-points or objects that are similar to each other in terms of a concept of similarity. They render a general and high-level scrutiny of the databases that can serve as an end in itself or a means to further data mining activities. Segmentation of spatial data into homogenous or interconnected groups, identification of regions with varying levels of information granularity, detection of spatial group structures of specific characteristics, and visualization of spatial phenomena under natural groupings are typical purpose of clustering with very little or no prior knowledge about the data. Often, clustering is employed as an initial exploration of the data that might form natural structures or relationships. It usually sets the stage for further data analysis or mining of structures and processes. Clustering has long been a main concern in statistical investigations and other data-heavy researches (Duda and Hart 1974; Jain and Dubes 1988; Everitt 1993). It is essentially an unsupervised learning, a terminology used in the field of pattern recognition and artificial intelligence, which aims at the discovery from data a class structure or classes that are unknown a priori. It has found its applications in fields such as pattern recognition, image processing, micro array data analysis, data storage, data transmission, machine learning, computer vision, remote sensing, geographical information science, and geographical research. Novel algorithms have also been developed arising from these applications. The advancement of data mining applications and the associated data sets have however posed new challenges to clustering, and it in turn intensifies the interest in clustering research. Catering for very large databases, particularly spatial databases, some new methods have also been developed over the years (Murray and Estivilli-Castro 1998; Miller and Han 2001; Li et al. 2006). To facilitate our discussion, a brief review of the clustering methods is first made in this section.

Suggested Citation

  • Yee Leung, 2010. "Discovery of Intrinsic Clustering in Spatial Data," Advances in Spatial Science, in: Knowledge Discovery in Spatial Data, chapter 0, pages 13-96, Springer.
  • Handle: RePEc:spr:adspcp:978-3-642-02664-5_2
    DOI: 10.1007/978-3-642-02664-5_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adspcp:978-3-642-02664-5_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.