Author
Abstract
This chapter presents a new design that unites the favorable technical and ecological characteristics of the solar and nuclear power plants. The current designs of nuclear reactors promise integral configuration of the primary coolant loop, secondary coolant loop, and a number of passive safety functions and overall simplification of the reactor. The present nuclear reactor design emphasizes on the safety of the reactor core at all times, i.e., controlling the reactor, cooling the reactor core, and maintaining containment. In case of non-availability of standby emergency DGs during beyond design basis event like Fukushima incident, etc., leading to extended station blackout conditions, the passive decay heat removal system will be affected. Hence, additional DGs have been made as a mandatory requirement in nuclear power plants. In case the ADG could not be mobilized during BDBE, an additional backup power source not affected by BDBE is appreciated. Hence in addition to the diesel power sources (EDG and ADG), a new design was developed for integration of diesel power with solar power. The hybrid system was designed to improve the reliability and availability of passive heat removal system, to ensure a reliable supply without interruption, and to improve the overall system reliability (by the integration with the battery bank). This hybrid power also gives the redundant power supply to the safety critical systems. This chapter also features a detailed reliability analysis carried out for power supplies to the safety critical loads. In addition a comparison was made between PV/diesel/battery with diesel/battery. These new hybrid systems conserves diesel fuel and reduce CO2 as well as particulate emissions that are harmful to environment health. Integration of solar power to the existing battery power will increase the reliability and extended availability of the system and thereby ensures safety of the plant during crisis/calamities.
Suggested Citation
Kudiyarasan Swamynathan, 2021.
"Feasibility Analysis of Solar Power for the Safety of Fast Reactors during beyond Design Basis Events,"
Chapters, in: Tolga Taner & Archana Tiwari & Taha Selim Ustun (ed.), Renewable Energy - Technologies and Applications,
IntechOpen.
Handle:
RePEc:ito:pchaps:205905
DOI: 10.5772/intechopen.89822
Download full text from publisher
More about this item
Keywords
;
;
;
;
;
;
;
;
JEL classification:
- Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
- Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:205905. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.