Author
Listed:
- Georgios F. Nikolaidis
- Ana Duarte
- Susan Griffin
- James Lomas
Abstract
Economic evaluations often utilise individual-patient data (IPD) to calculate probabilities of events based on observed proportions. However, this approach is limited when interest is in the likelihood of extreme biomarker values that vary by observable characteristics such as blood glucose in gestational diabetes mellitus (GDM). Here, instead of directly calculating probabilities using the IPD, we utilised flexible parametric models that estimate the full conditional distribution, capturing the non-normal characteristics of biomarkers and enabling the derivation of tail probabilities for specific populations. In the case study, we used data from the Born in Bradford study (N= 10,353) to model two non-normally distributed GDM biomarkers (2-hours post-load and fasting glucose). First, we applied fully parametric maximum likelihood to estimate alternative flexible models and information criteria for model selection. We then integrated the chosen distributions in a probabilistic decision model that estimates the cost-effective diagnostic thresholds and the expected costs and quality-adjusted life years (QALYs) of the alternative strategies (‘Testing and Treating’, ‘Treat all’, ‘Do Nothing’). The model adopts the ‘payer’ perspective and expresses results in net monetary benefits (NMB). The log-logistic and Singh-Maddala distributions offered the optimal fit for the 2-hours post-load and fasting glucose biomarkers, respectively. At £13,000 per QALY, maximum NMB with ‘Test and Treat’ (−£330) was achieved for a diagnostic threshold of fasting glucose >6.6 mmol/L, 2-hours post-load glucose >9 mmol/L, identifying 2.9% of women as GDM positive. The case study demonstrated that fully parametric approaches can be implemented in healthcare modelling when interest lies in extreme biomarker values.
Suggested Citation
Georgios F. Nikolaidis & Ana Duarte & Susan Griffin & James Lomas, 2024.
"‘Beyond the Mean’ in Biomarkers Modelling for Economic Evaluations: A Case Study in Gestational Diabetes Mellitus,"
Contributions to Economic Analysis, in: Recent Developments in Health Econometrics, volume 127, pages 85-110,
Emerald Group Publishing Limited.
Handle:
RePEc:eme:ceazzz:s0573-855520240000297005
DOI: 10.1108/S0573-855520240000297005
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ceazzz:s0573-855520240000297005. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.