IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-90532019000040a007.html
   My bibliography  Save this book chapter

Robust Estimation of ARMA Models with Near Root Cancellation

In: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A

Author

Listed:
  • Timothy Cogley
  • Richard Startz

Abstract

Standard estimation of ARMA models in which the AR and MA roots nearly cancel, so that individual coefficients are only weakly identified, often produces inferential ranges for individual coefficients that give a spurious appearance of accuracy. We remedy this problem with a model that uses a simple mixture prior. The posterior mixing probability is derived using Bayesian methods, but we show that the method works well in both Bayesian and frequentist setups. In particular, we show that our mixture procedure weights standard results heavily when given data from a well-identified ARMA model (which does not exhibit near root cancellation) and weights heavily an uninformative inferential region when given data from a weakly-identified ARMA model (with near root cancellation). When our procedure is applied to a well-identified process the investigator gets the “usual results,” so there is no important statistical cost to using our procedure. On the other hand, when our procedure is applied to a weakly identified process, the investigator learns that the data tell us little about the parameters – and is thus protected against making spurious inferences. We recommend that mixture models be computed routinely when inference about ARMA coefficients is of interest.

Suggested Citation

  • Timothy Cogley & Richard Startz, 2019. "Robust Estimation of ARMA Models with Near Root Cancellation," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 133-155, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-90532019000040a007
    DOI: 10.1108/S0731-90532019000040A007
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-90532019000040A007/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-90532019000040A007/full/epub?utm_source=repec&utm_medium=feed&utm_campaign=repec&title=10.1108/S0731-90532019000040A007
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-90532019000040A007/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://libkey.io/10.1108/S0731-90532019000040A007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    2. Nelson, Charles R. & Startz, Richard, 2007. "The zero-information-limit condition and spurious inference in weakly identified models," Journal of Econometrics, Elsevier, vol. 138(1), pages 47-62, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loria, Francesca & Matthes, Christian & Wang, Mu-Chun, 2022. "Economic theories and macroeconomic reality," Journal of Monetary Economics, Elsevier, vol. 126(C), pages 105-117.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Ma & Charles R. Nelson, 2008. "Valid Inference for a Class of Models Where Standard Inference Performs Poorly: Including Nonlinear Regression, ARMA, GARCH, and Unobserved Components," Working Papers UWEC-2008-06-R, University of Washington, Department of Economics, revised Sep 2008.
    2. Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
    3. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.
    4. Myroslav Pidkuyko, 2014. "Dynamics of Consumption and Dividends over the Business Cycle," CERGE-EI Working Papers wp522, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    5. Ippei Fujiwara & Koji Takahashi, 2012. "Asian Financial Linkage: Macro‐Finance Dissonance," Pacific Economic Review, Wiley Blackwell, vol. 17(1), pages 136-159, February.
    6. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    7. Barnett, Glen & Kohn, Robert & Sheather, Simon, 1996. "Bayesian estimation of an autoregressive model using Markov chain Monte Carlo," Journal of Econometrics, Elsevier, vol. 74(2), pages 237-254, October.
    8. Donald W. K. Andrews & Patrik Guggenberger, 2015. "Identification- and Singularity-Robust Inference for Moment Condition," Cowles Foundation Discussion Papers 1978R2, Cowles Foundation for Research in Economics, Yale University, revised Jan 2019.
    9. Tripathi Praveen Kumar & Sen Rijji & Upadhyay S. K., 2021. "A Bayes algorithm for model compatibility and comparison of ARMA(p,q) models," Statistics in Transition New Series, Statistics Poland, vol. 22(2), pages 95-123, June.
    10. Zhang, Bo & Chan, Joshua C.C. & Cross, Jamie L., 2020. "Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1318-1328.
    11. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    12. Yuri A. Dubnov & Alexandr V. Boulytchev, 2023. "Accelerated Maximum Entropy Method for Time Series Models Estimation," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
    13. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    14. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    15. Martin X. Dunbar & Hani M. Samawi & Robert Vogel & Lili Yu, 2014. "Steady-state Gibbs sampler estimation for lung cancer data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 977-988, May.
    16. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    17. Josh Beverly & Shamar L. Stewart & Clinton L. Neill, 2023. "The dynamics of labor force participation: Is all quiet on the Appalachian front?," Empirical Economics, Springer, vol. 65(6), pages 2867-2898, December.
    18. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    19. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    20. Gordon, Stephen & Bélanger, Gilles, 1996. "Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 72(1), pages 27-49, mars.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-90532019000040a007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.