IDEAS home Printed from https://ideas.repec.org/b/spr/spopap/978-3-319-65919-0.html
   My bibliography  Save this book

Linear Programming Using MATLAB®

Author

Listed:
  • Nikolaos Ploskas

    (University of Macedonia)

  • Nikolaos Samaras

    (University of Macedonia)

Abstract

No abstract is available for this item.

Individual chapters are listed in the "Chapters" tab

Suggested Citation

  • Nikolaos Ploskas & Nikolaos Samaras, 2017. "Linear Programming Using MATLAB®," Springer Optimization and Its Applications, Springer, number 978-3-319-65919-0, September.
  • Handle: RePEc:spr:spopap:978-3-319-65919-0
    DOI: 10.1007/978-3-319-65919-0
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sophia Voulgaropoulou & Nikolaos Samaras & Nikolaos Ploskas, 2022. "Predicting the Execution Time of the Primal and Dual Simplex Algorithms Using Artificial Neural Networks," Mathematics, MDPI, vol. 10(7), pages 1-21, March.
    2. Marianna E.-Nagy & Anita Varga, 2023. "A new long-step interior point algorithm for linear programming based on the algebraic equivalent transformation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 691-711, September.
    3. Mohand Bentobache & Mohamed Telli & Abdelkader Mokhtari, 2022. "New LP-based local and global algorithms for continuous and mixed-integer nonconvex quadratic programming," Journal of Global Optimization, Springer, vol. 82(4), pages 659-689, April.
    4. Jae Hyoung Lee & Nithirat Sisarat & Liguo Jiao, 2021. "Multi-objective convex polynomial optimization and semidefinite programming relaxations," Journal of Global Optimization, Springer, vol. 80(1), pages 117-138, May.

    Book Chapters

    The following chapters of this book are listed in IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spopap:978-3-319-65919-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.