IDEAS home Printed from https://ideas.repec.org/b/dau/thesis/123456789-8008.html
   My bibliography  Save this book

Contrôle stochastique appliqué à la finance

Editor

Listed:
  • Bouchard, Bruno

Author

Listed:
  • Vu, Thanh Nam

Abstract

This PhD dissertation presents three independent research topics in the field of stochastic target and optimal control problems with applications to financial mathematics. In a first part, we provide a PDE characterization of the super hedging price of an American option of barrier types in a Markovian model of financial market. This extends to the American case a recent works of Bouchard and Bentahar (2006), who considered European barrier options, and Karatzas and Wang (2000), who discussed the case of perpetual American barrier options in a Black and Scholes type model. Contrary to their result, we do not use the usual dual formulation, which allows to reduce to a standard control problem, but instead prove and appeal to an American version of the geometric dynamic programming principle for stochastic targets of Soner and Touzi (2002). This allows us to avoid the non-degeneracy assumption on the volatility coefficients, and therefore extends their results to possibly degenerate cases which typically appear when the market is not complete. As a by-product, we provide an extension to the case of American type targets, which is of own interest. In the second part, within a Brownian diffusion Markovian framework, we provide a direct PDE characterization of the minimal initial endowment required so that the terminal wealth of a financial agent (possibly diminished by the pay off of a random claim) can match a set of constraints in probability. Such constraints should be interpreted as a rough description of a targeted profit and loss (P&L) distribution. This allows to give a price to options under a P&L constraint, or to provide a description of the discrete P&L profiles that can be achieved given an initial capital. This approach provides an alternative to the standard utility indifference (or marginal) pricing rules which is better adapted to market practices. From the mathematical point of view, this is an extension of the stochastic target problem under controlled loss, studied in Bouchard, Elie and Touzi (2008), to the case of multiple constraints. Although the associated Hamilton-Jacobi-Bellman operator is fully discontinuous, and the terminal condition is irregular, we are able to construct a numerical scheme that converges at any continuity points of the pricing function. The last part of this thesis is concerned with the extension of the optimal control of direction of reflection problem introduced in Bouchard (2007) to the jump diffusion case. In a Brownian diffusion framework with jumps, the controlled process is defined as the solution of a stochastic differential equation reflected at the boundary of a domain along oblique directions of reflection which are controlled by a predictable process which may have jumps. We also provide a version of the weak dynamic programming principle of Bouchard and Touzi (2009) adapted to our context and which is sufficient to provide a viscosity characterization of the associated value function without requiring the usual heavy measurable selection arguments nor the a-priori continuity of the value function.

Suggested Citation

  • Vu, Thanh Nam, 2011. "Contrôle stochastique appliqué à la finance," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/8008 edited by Bouchard, Bruno.
  • Handle: RePEc:dau:thesis:123456789/8008
    Note: dissertation
    as

    Download full text from publisher

    File URL: http://basepub.dauphine.fr/xmlui/bitstream/123456789/8008/1/thesedeVUnew.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Processus de Markov; Risque financier; Analyse stochastique;
    All these keywords.

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dau:thesis:123456789/8008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexandre Faure The email address of this maintainer does not seem to be valid anymore. Please ask Alexandre Faure to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/daup9fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.