IDEAS home Printed from https://ideas.repec.org/a/zna/indecs/v13y2016i1p10-22.html
   My bibliography  Save this article

A biologically inspired model of distributed online communication supporting efficient search and diffusion of innovation

Author

Listed:
  • Soumya Banerjee

    (Broad Institute of MIT and Harvard, Cambridge, USA; Ronin Institute Montclair, USA and Complex Biological Systems Alliance North Andover, USA)

Abstract

We inhabit a world that is not only “small” but supports efficient decentralized search – an individual using local information can establish a line of communication with another completely unknown individual. Here we augment a hierarchical social network model with communication between and within communities. We argue that organization into communities would decrease overall decentralized search times. We take inspiration from the biological immune system which organizes search for pathogens in a hybrid modular strategy. Our strategy has relevance in search for rare amounts of information in online social networks and could have implications for massively distributed search challenges. Our work also has implications for design of efficient online networks that could have an impact on networks of human collaboration, scientific collaboration and networks used in targeted manhunts. Real world systems, like online social networks, have high associated delays for long-distance links, since they are built on top of physical networks. Such systems have been shown to densify i.e. the average number of neighbours that an individual has increases with time. Hence such networks will have a communication cost due to space and the requirement of building and maintaining and increasing number of connections. We have incorporated such a non-spatial cost to communication in order to introduce the realism of individuals communicating within communities, which we call participation cost. We introduce the notion of a community size that increases with the size of the system, which is shown to reduce the time to search for information in networks. Our final strategy balances search times and participation costs and is shown to decrease time to find information in decentralized search in online social networks. Our strategy also balances strong-ties (within communities) and weak-ties over long distances (between communities that bring in diverse ideas) and may ultimately lead to more productive and innovative networks of human communication and enterprise. We hope that this work will lay the foundation for strategies aimed at producing global scale human interaction networks that are sustainable and lead to a more networked, diverse and prosperous society.

Suggested Citation

  • Soumya Banerjee, 2016. "A biologically inspired model of distributed online communication supporting efficient search and diffusion of innovation," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 14(1), pages 10-22.
  • Handle: RePEc:zna:indecs:v:13:y:2016:i:1:p:10-22
    as

    Download full text from publisher

    File URL: http://indecs.eu/2016/indecs2016-pp10-22.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soumya Banerjee, 2017. "An Immune System Inspired Theory for Crime and Violence in Cities," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 15(2), pages 133-143.
    2. repec:zna:indecs:v:15:y:2017:i:2:p:190-198 is not listed on IDEAS
    3. Soumya Banerjee, 2020. "A framework for designing compassionate and ethical artificial intelligence and artificial intelligence and artificial consciousness," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 18(2A), pages 85-95.
    4. Soumya Banerjee, 2018. "Citizen Data Science for Social Good in Complex Systems," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 16(1), pages 88-91.
    5. Soumya Banerjee, 2017. "A computational technique to estimate within-host productively infected cell lifetimes in emerging viral infections," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 15(3), pages 190-198.

    More about this item

    Keywords

    social computing; complex systems; social dynamics; innovation diffusion; artificial immune system;
    All these keywords.

    JEL classification:

    • Z19 - Other Special Topics - - Cultural Economics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zna:indecs:v:13:y:2016:i:1:p:10-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Josip Stepanic (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.