Author
Listed:
- Rama Talat Rashad
(Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt. P.O. Box: 175 Orman, Area Code: 12112, Tel. +2 01062856224.)
Abstract
The main purpose of this laboratory study is to indicate the variation in some characteristics of the sandy, sandy calcareous, and clay soil under the effect of the magnetically treated tab and/or salt water. Salt water (SW, 2000-ppm) was prepared by dissolving the sodium chloride (NaCl) salt in tap water TW (2 g L-1). Tab water and/or SW were magnetically treated by passage through a permanent electromagnetic field of 14٫000 G (1.4 Tesla) strength for 10 min, and then allowed to percolate through a soil column continuously for 2 h. Some characteristics of the studied soil samples were estimated after the infiltrate of the magnetically (M) and non-magnetically (NM) treated TW and/or SW. The MSW has decreased the hydraulic conductivity (HC, m day-1) by 41.1, 12.8, and 51.4% compared to NMSW for sandy, sandy calcareous, and clay soil, respectively. Magnetic induction may affect the coagulation of the fine particles to form larger aggregates. For clay soil, MTW decreased the sum of fine particles by 40.5%, while the MSW decreased it by 28.75%, which may be a dispersing effect of NaCl soluble salt. The Zeta potential ζ values were slightly shifted by SW and MSW. The calculated electrophoretic mobility (U) of the colloidal particles has increased under the effect of the SW by 15.6%, 28.6%, and 58.1% for the sandy, sandy calcareous, and clay soil, respectively. Magnetized water may affect the soil properties positively and/or negatively depending on the soil class and the application conditions.
Suggested Citation
Rama Talat Rashad, 2022.
"Studying The Effect Of Magnetically Treated Salt Water On Some Chemical And Physical Characteristics Of The Sandy, Sandy Calcareous, And Clay Soil,"
Journal Clean WAS (JCleanWAS), Zibeline International Publishing, vol. 6(2), pages 66-74, October.
Handle:
RePEc:zib:jclnws:v:6:y:2022:i:2:p:66-74
DOI: 10.26480/jcleanwas.02.2022.66.74
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:jclnws:v:6:y:2022:i:2:p:66-74. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing The email address of this maintainer does not seem to be valid anymore. Please ask Zibeline International Publishing to update the entry or send us the correct address
(email available below). General contact details of provider: https://jcleanwas.com/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.