IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/324921.html
   My bibliography  Save this article

Data mining approach in detecting inaccurate financial statements in government-owned enterprises

Author

Listed:
  • Gadžo, Amra
  • Suljić, Mirza
  • Jusufović, Adisa
  • Filipović, Slađana
  • Suljić, Erna

Abstract

The study aims to assess the capability of various data mining techniques in detecting inaccurate financial statements of government-owned enterprises operating in the Federation of Bosnia and Herzegovina (FBiH). Inaccurate financial statements indicate potential financial fraud. Prediction models of four classification algorithms (J48, KNN, MLP, and BayesNet) were examined using a dataset comprising 200 audited financial statements from government-owned enterprises under the supervision of the Audit Office of the Institutions in the Federation of Bosnia and Herzegovina. The results obtained through data mining analysis reveal that a dataset encompassing seven balance sheet items provides the most comprehensive depiction of financial statement quality. These seven attributes are: opening entry of accounts receivable, profit (loss) at the end of the period, operating assets at the end of the period, accounts receivable at the end of the period, opening entry of operating assets, short term financial investments at the end of the period, and opening entry of short-term financial investments. By employing these seven attributes, the MLP algorithm was implemented to construct the most precise predictive model, achieving a 76% accurate classification rate for financial statements. Leveraging the identified attributes, a mathematical model could potentially be formulated to effectively predict financial statements of government-owned enterprises in FBiH. This, in turn, could considerably facilitate the process of selecting GOEs for inclusion in the annual work plan of state auditors. Presently, due to resource constraints, government-owned enterprises in FBiH do not undergo regular annual scrutiny by state auditors, with only 10 to 15 such enterprises being subject to audits each year. The results of this research can also be beneficial to both the public and the Financial Intelligence Agency in the FBiH. The paper contributes to filling the gap in the literature regarding the applied methodology, particularly in the part concerning the attributes used in the research.

Suggested Citation

  • Gadžo, Amra & Suljić, Mirza & Jusufović, Adisa & Filipović, Slađana & Suljić, Erna, 2025. "Data mining approach in detecting inaccurate financial statements in government-owned enterprises," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 16(1), pages 1-15.
  • Handle: RePEc:zbw:espost:324921
    DOI: 10.17535/crorr.2025.0001
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/324921/1/Data_mining_approach_government_owned_enterprises.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.17535/crorr.2025.0001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:324921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.