Author
Listed:
- MARCOS ESCOBAR-ANEL
(Department of Statistical and Actuarial Sciences, The University of Western Ontario, London, Canada)
- ANDREAS LICHTENSTERN
(#x2020;Department of Mathematics, Technical University of Munich, Munich, Germany)
- RUDI ZAGST
(#x2020;Department of Mathematics, Technical University of Munich, Munich, Germany)
Abstract
This paper studies the optimal investment problem for a behavioral investor with probability distortion functions and an S-shaped utility function whose utility on gains satisfies the Inada condition at infinity, albeit not necessarily at zero, in a complete continuous-time financial market model. In particular, a piecewise utility function with hyperbolic absolute risk aversion (HARA) is applied. The considered behavioral framework, cumulative prospect theory (CPT), was originally introduced by [A. Tversky & D. Kahneman (1992) Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty 5 (4), 297–323]. The utility model allows for increasing, constant or decreasing relative risk aversion. The continuous-time portfolio selection problem under the S-shaped HARA utility function in combination with probability distortion functions on gains and losses is solved theoretically for the first time, the optimal terminal wealth and its replicating wealth process and investment strategy are stated. In addition, conditions on the utility and the probability distortion functions for well-posedness and closed-form solutions are provided. A specific probability distortion function family is presented which fulfills all those requirements. This generalizes the work by [H. Jin & X. Y. Zhou (2008) Behavioral portfolio selection in continuous time, Mathematical Finance 18 (3), 385–426]. Finally, a numerical case study is carried out to illustrate the impact of the utility function and the probability distortion functions.
Suggested Citation
Marcos Escobar-Anel & Andreas Lichtenstern & Rudi Zagst, 2020.
"Behavioral Portfolio Choice Under Hyperbolic Absolute Risk Aversion,"
International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(07), pages 1-33, November.
Handle:
RePEc:wsi:ijtafx:v:23:y:2020:i:07:n:s0219024920500454
DOI: 10.1142/S0219024920500454
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:23:y:2020:i:07:n:s0219024920500454. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.