Author
Abstract
We describe systems using Kauffman and similar networks. They are directed functioning networks consisting of finite number of nodes with finite number of discrete states evaluated in synchronous mode of discrete time. In this paper we introduce the notion and phenomenon of "structural tendencies". Along the way we expand Kauffman networks, which were a synonym of Boolean networks, to more than two signal variants and we find a phenomenon during network growth which we interpret as "complexity threshold". For simulation we define a simplified algorithm which allows us to omit the problem of periodic attractors. We estimate that living and human designed systems are chaotic (in Kauffman sense) which can be named — complex. Such systems grow in adaptive evolution. These two simple assumptions lead to certain statistical effects, i.e., structural tendencies observed in classic biology but still not explained and not investigated on theoretical way. For example, terminal modifications or terminal predominance of additions where terminal means: near system outputs. We introduce more than two equally probable variants of signal, therefore our networks generally are not Boolean networks. They grow randomly by additions and removals of nodes imposed on Darwinian elimination. Fitness is defined on external outputs of system. During growth of the system we observe a phase transition to chaos (threshold of complexity) in damage spreading. Above this threshold we identify mechanisms of structural tendencies which we investigate in simulation for a few different networks types, including scale-free BA networks.
Suggested Citation
Andrzej Gecow, 2008.
"Structural Tendencies — Effects Of Adaptive Evolution Of Complex (Chaotic) Systems,"
International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 647-664.
Handle:
RePEc:wsi:ijmpcx:v:19:y:2008:i:04:n:s0129183108012418
DOI: 10.1142/S0129183108012418
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:19:y:2008:i:04:n:s0129183108012418. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.