Author
Listed:
- Mohammad Reza Bazargan-Lari
(Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada)
- Sharareh Taghipour
(Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada)
Abstract
Manufacturing companies sometimes suffer from unexpected production disruptions/interruptions events (DIEs), affecting the production performance and cost. Since DIEs vary in type and cause, predicting the characteristics of their corresponding production downtimes is a challenging task. Although efforts have been devoted to forecast/prevent specific types of DIEs, such as machine-related events, it is still difficult to deal with the uncertainty caused by a combination of production DIEs of various types. Moreover, the absence of a realistic scenario generator incorporating DIEs has been a challenge in production scheduling under uncertainty. This study investigates the potential use of a hybrid data-driven approach in incorporating the uncertainties of a wide range of DIEs. In this approach, a random forest (RF) method and probability distributions are integrated to forecast the DIEs. The study was carried out based on the recorded DIEs in a Canadian company producing assembly parts for automotive industry. The performance of the proposed methodology for forecasting the production DIEs is evaluated by determining the predicted total downtime (TD) in percent of the expected processing time. The proposed hybrid model yields an overall accuracy of 92.82% in predicting the TD, compared to an overall accuracy of 75.64% when a single RF is used for prediction.
Suggested Citation
Mohammad Reza Bazargan-Lari & Sharareh Taghipour, 2022.
"A Hybrid Data-Driven Approach for Forecasting the Characteristics of Production Disruptions and Interruptions,"
International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1127-1154, July.
Handle:
RePEc:wsi:ijitdm:v:21:y:2022:i:04:n:s0219622022500171
DOI: 10.1142/S0219622022500171
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:21:y:2022:i:04:n:s0219622022500171. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.