Author
Listed:
- FEI LIU
(School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China)
- DALEI JING
(School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China)
Abstract
To minimize the thermal resistance of the fractal treelike heat conduction network and develop an optimization principle applicable for the network with an arbitrary cross-sectional shape, this paper first establishes a theoretical model regarding the total thermal resistance of the symmetric treelike network with arbitrary cross-sectional shapes and then studies the effects of the geometric and structural parameters of the network on its total thermal resistance. The numerical simulations are also performed to analyze the influences of the geometric and structural parameters of symmetric treelike networks with circular, rectangular and triangular cross-sectional shapes on the total thermal resistance. Both the theoretical model and the numerical simulation show that the total thermal resistance of the network with an arbitrary cross-sectional shape first decreases and then increases with increasing cross-sectional area ratio but always increases with increasing length ratio of branches at two successive branching levels when the total branch volume is constant. When the cross-sectional area ratio is equal to the reciprocal of the branching number, the treelike network has the minimum total thermal resistance. This scaling law is applicable for the treelike network with an arbitrary cross-sectional shape to achieve the minimum total thermal resistance.
Suggested Citation
Fei Liu & Dalei Jing, 2022.
"Optimization Of Heat Conduction For Treelike Network With Arbitrary Cross-Sectional Shape,"
FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(01), pages 1-9, February.
Handle:
RePEc:wsi:fracta:v:30:y:2022:i:01:n:s0218348x21502571
DOI: 10.1142/S0218348X21502571
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:30:y:2022:i:01:n:s0218348x21502571. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.