Author
Listed:
- SOUMYA RANJAN NAYAK
(Department of Information Technology, College of Engineering and Technology, Bhubaneswar, Odisha, India)
- JIBITESH MISHRA
(��Department of CSA, College of Engineering and Technology, Bhubaneswar, Odisha, India)
Abstract
Fractal Dimension (FD) estimation in digital image analysis has received much attention due to its dimensional significance and therefore has become an active area of research over the year. The earlier FD-based techniques often followed traditional box-counting and its different variation of differential box-counting (DBC) paradigms, in which the proper choice of box count has remained a major concern. However, most of the state-of-the-art DBC variants suffer from considerable limitations like over-counting (OC), under-counting (UC), and limited their application only to square-shaped images, and it is still a major research problem! In this backdrop, the current investigation proposes a generalized box-counting (graylevel invariant DBC); and compares it with other state-of-the-art techniques. The proposed model is evaluated on five benchmark texture datasets (which include real and generated synthetic images) and obtained better results than the existing methods and achieved all desired outcomes by eliminating both OC and UC problems. This algorithm works for any arbitrarily sized (both squared and rectangular) images. It gives a higher rate of accuracy in terms of less fitting error in detecting exact surface roughness from given datasets.
Suggested Citation
Soumya Ranjan Nayak & Jibitesh Mishra, 2021.
"Fractal Dimension-Based Generalized Box-Counting Technique With Application To Grayscale Images,"
FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(03), pages 1-17, May.
Handle:
RePEc:wsi:fracta:v:29:y:2021:i:03:n:s0218348x21500559
DOI: 10.1142/S0218348X21500559
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:29:y:2021:i:03:n:s0218348x21500559. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.