IDEAS home Printed from https://ideas.repec.org/a/wly/wirecc/v2y2011i6p783-800.html
   My bibliography  Save this article

Earth system models: an overview

Author

Listed:
  • Gregory M. Flato

Abstract

Earth System models (ESMs) are global climate models with the added capability to explicitly represent biogeochemical processes that interact with the physical climate and so alter its response to forcing such as that associated with human‐caused emissions of greenhouse gases. Representing the global carbon cycle allows for feedbacks between the physical climate and the biological and chemical processes in the ocean and on land that take up some of the emitted carbon dioxide and so act to reduce warming. The sulfur cycle is also important in that both natural and human emissions of sulfur contribute to the production of sulfate aerosols which reflect incoming solar radiation (a direct cooling effect) and alter cloud properties (an indirect cooling effect). Other components such as ozone are also being incorporated into some ESMs. Evaluating the physical component of an ESM is becoming increasingly comprehensive and sophisticated, but the evaluation of the biogeochemical components suffer somewhat from a lack of comprehensive global‐scale observational data. Nevertheless, such models provide valuable insight into climate variability and change, and the role of human activities and possible mitigation actions on future climate change. Internationally coordinated experiments are increasingly important in providing a multimodel ensemble of climate simulations, thereby taking advantage of some ‘cancellation of errors’ and allowing better quantification of uncertainty. WIREs Clim Change 2011, 2:783–800. doi: 10.1002/wcc.148 This article is categorized under: Climate Models and Modeling > Earth System Models

Suggested Citation

  • Gregory M. Flato, 2011. "Earth system models: an overview," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(6), pages 783-800, November.
  • Handle: RePEc:wly:wirecc:v:2:y:2011:i:6:p:783-800
    DOI: 10.1002/wcc.148
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wcc.148
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wcc.148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erik T. Smith & Scott C. Sheridan, 2021. "Projections of cold air outbreaks in CMIP6 earth system models," Climatic Change, Springer, vol. 169(1), pages 1-16, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:wirecc:v:2:y:2011:i:6:p:783-800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1757-7799 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.