IDEAS home Printed from https://ideas.repec.org/a/wly/wirecc/v1y2010i5p627-635.html
   My bibliography  Save this article

Prospects for decadal climate prediction

Author

Listed:
  • Noel S. Keenlyside
  • Jin Ba

Abstract

During the last decade, global surface temperatures did not increase as rapidly as in the preceding decades. Although relatively small compared to the observed centennial scale global warming, it has renewed interest in understanding and even predicting climate on time scales of decades, and sparked a community initiative on near‐term prediction that will feature in the fifth intergovernmental panel on climate change assessment report. Decadal prediction, however, is in its infancy, with only a few publications existing. This article has three aims. The first is to make the case for decadal prediction. Decadal fluctuations in global climate similar to that of recent decades were observed during the past century. Associated with large regional changes in precipitation and climate extremes, they are of socioeconomic importance. Climate models, which capture some aspects of observed decadal variability, indicate that such variations might be partly predictable. The second aim is to describe the major challenges to skilful decadal climate prediction. One is poor understanding of mechanisms of decadal climate variability, with climate models showing little agreement. Sparse observations in the past, particularly in the ocean, are also a limiting factor to developing and testing of initialization and prediction systems. The third aim is to stress that despite promising initial results, decadal prediction is in a highly experimental stage, and care is needed in interpreting results and utilizing data from such experiments. In the long‐term, decadal prediction has the potential to improve models, reduce uncertainties in climate change projections, and be of socioeconomic benefit. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: Climate Models and Modeling > Earth System Models Climate Models and Modeling > Knowledge Generation with Models

Suggested Citation

  • Noel S. Keenlyside & Jin Ba, 2010. "Prospects for decadal climate prediction," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 1(5), pages 627-635, September.
  • Handle: RePEc:wly:wirecc:v:1:y:2010:i:5:p:627-635
    DOI: 10.1002/wcc.69
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wcc.69
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wcc.69?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:wirecc:v:1:y:2010:i:5:p:627-635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1757-7799 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.