IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v41y2021i1p79-91.html
   My bibliography  Save this article

Modeling the Dose Response Relationship of Waterborne Acanthamoeba

Author

Listed:
  • Kara Dean
  • Sushil Tamrakar
  • Yin Huang
  • Joan B. Rose
  • Jade Mitchell

Abstract

This study developed dose response models for determining the probability of eye or central nervous system infections from previously conducted studies using different strains of Acanthamoeba spp. The data were a result of animal experiments using mice and rats exposed corneally and intranasally to the pathogens. The corneal inoculations of Acanthamoeba isolate Ac 118 included varied amounts of Corynebacterium xerosis and were best fit by the exponential model. Virulence increased with higher levels of C. xerosis. The Acanthamoeba culbertsoni intranasal study with death as an endpoint of response was best fit by the beta‐Poisson model. The HN‐3 strain of A. castellanii was studied with an intranasal exposure and three different endpoints of response. For all three studies, the exponential model was the best fit. A model based on pooling data sets of the intranasal exposure and death endpoint resulted in an LD50 of 19,357 amebae. The dose response models developed in this study are an important step towards characterizing the risk associated with free‐living amoeba like Acanthamoeba in drinking water distribution systems. Understanding the human health risk posed by free‐living amoeba will allow for quantitative microbial risk assessments that support building design decisions to minimize opportunities for pathogen growth and survival.

Suggested Citation

  • Kara Dean & Sushil Tamrakar & Yin Huang & Joan B. Rose & Jade Mitchell, 2021. "Modeling the Dose Response Relationship of Waterborne Acanthamoeba," Risk Analysis, John Wiley & Sons, vol. 41(1), pages 79-91, January.
  • Handle: RePEc:wly:riskan:v:41:y:2021:i:1:p:79-91
    DOI: 10.1111/risa.13603
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13603
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:41:y:2021:i:1:p:79-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.