IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v36y2016i10p1969-1982.html
   My bibliography  Save this article

Cryptosporidium Infection Risk: Results of New Dose‐Response Modeling

Author

Listed:
  • Michael J. Messner
  • Philip Berger

Abstract

Cryptosporidium human dose‐response data from seven species/isolates are used to investigate six models of varying complexity that estimate infection probability as a function of dose. Previous models attempt to explicitly account for virulence differences among C. parvum isolates, using three or six species/isolates. Four (two new) models assume species/isolate differences are insignificant and three of these (all but exponential) allow for variable human susceptibility. These three human‐focused models (fractional Poisson, exponential with immunity and beta‐Poisson) are relatively simple yet fit the data significantly better than the more complex isolate‐focused models. Among these three, the one‐parameter fractional Poisson model is the simplest but assumes that all Cryptosporidium oocysts used in the studies were capable of initiating infection. The exponential with immunity model does not require such an assumption and includes the fractional Poisson as a special case. The fractional Poisson model is an upper bound of the exponential with immunity model and applies when all oocysts are capable of initiating infection. The beta Poisson model does not allow an immune human subpopulation; thus infection probability approaches 100% as dose becomes huge. All three of these models predict significantly (>10x) greater risk at the low doses that consumers might receive if exposed through drinking water or other environmental exposure (e.g., 72% vs. 4% infection probability for a one oocyst dose) than previously predicted. This new insight into Cryptosporidium risk suggests additional inactivation and removal via treatment may be needed to meet any specified risk target, such as a suggested 10−4 annual risk of Cryptosporidium infection.

Suggested Citation

  • Michael J. Messner & Philip Berger, 2016. "Cryptosporidium Infection Risk: Results of New Dose‐Response Modeling," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1969-1982, October.
  • Handle: RePEc:wly:riskan:v:36:y:2016:i:10:p:1969-1982
    DOI: 10.1111/risa.12541
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12541
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philip J. Schmidt, 2015. "Norovirus Dose–Response: Are Currently Available Data Informative Enough to Determine How Susceptible Humans Are to Infection from a Single Virus?," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1364-1383, July.
    2. Peter F. M. Teunis & Cynthia L. Chappell & Pablo C. Okhuysen, 2002. "Cryptosporidium Dose Response Studies: Variation Between Isolates," Risk Analysis, John Wiley & Sons, vol. 22(1), pages 175-185, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philip J. Schmidt & Cynthia L. Chappell, 2016. "Comment on “Cryptosporidium Infection Risk: Results of New Dose‐Response Modeling” — Discussion of Underlying Assumptions and Their Implications," Risk Analysis, John Wiley & Sons, vol. 36(12), pages 2189-2192, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven Duret & Régis Pouillot & Wendy Fanaselle & Efstathia Papafragkou & Girvin Liggans & Laurie Williams & Jane M. Van Doren, 2017. "Quantitative Risk Assessment of Norovirus Transmission in Food Establishments: Evaluating the Impact of Intervention Strategies and Food Employee Behavior on the Risk Associated with Norovirus in Food," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2080-2106, November.
    2. Philip J. Schmidt & Monica B. Emelko & Mary E. Thompson, 2020. "Recognizing Structural Nonidentifiability: When Experiments Do Not Provide Information About Important Parameters and Misleading Models Can Still Have Great Fit," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 352-369, February.
    3. K. D. M. Pintar & A. Fazil & F. Pollari & D. Waltner‐Toews & D. F. Charron & S. A. McEwen & T. Walton, 2012. "Considering the Risk of Infection by Cryptosporidium via Consumption of Municipally Treated Drinking Water from a Surface Water Source in a Southwestern Ontario Community," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1122-1138, July.
    4. Lailai Chen & Helena Geys & Shaun Cawthraw & Arie Havelaar & Peter Teunis, 2006. "Dose Response for Infectivity of Several Strains of Campylobacter jejuni in Chickens," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1613-1621, December.
    5. Régis Pouillot & Pascal Beaudeau & Jean‐Baptiste Denis & Francis Derouin & AFSSA Cryptosporidium Study Group, 2004. "A Quantitative Risk Assessment of Waterborne Cryptosporidiosis in France Using Second‐Order Monte Carlo Simulation," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 1-17, February.
    6. Anna Makri & Reza Modarres & Rebecca Parkin, 2004. "Cryptosporidiosis Susceptibility and Risk: A Case Study," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 209-220, February.
    7. Tucker Burch, 2019. "Validation of Quantitative Microbial Risk Assessment Using Epidemiological Data from Outbreaks of Waterborne Gastrointestinal Disease," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 599-615, March.
    8. Frederick Bloetscher & Daniel Meeroff & Sharon C. Long & Jeanine D. Dudle, 2020. "Demonstrating the Benefits of Predictive Bayesian Dose–Response Relationships Using Six Exposure Studies of Cryptosporidium parvum," Risk Analysis, John Wiley & Sons, vol. 40(11), pages 2442-2461, November.
    9. Peter Teunis & Katsuhisa Takumi & Kunihiro Shinagawa, 2004. "Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data," Risk Analysis, John Wiley & Sons, vol. 24(2), pages 401-407, April.
    10. S. R. Petterson, 2016. "Application of a QMRA Framework to Inform Selection of Drinking Water Interventions in the Developing Context," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 203-214, February.
    11. Nicole Van Abel & Mary E. Schoen & John C. Kissel & J. Scott Meschke, 2017. "Comparison of Risk Predicted by Multiple Norovirus Dose–Response Models and Implications for Quantitative Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(2), pages 245-264, February.
    12. Vegard Nilsen & John Wyller, 2016. "QMRA for Drinking Water: 1. Revisiting the Mathematical Structure of Single‐Hit Dose‐Response Models," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 145-162, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:36:y:2016:i:10:p:1969-1982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.