IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v22y2002i2p265-276.html
   My bibliography  Save this article

A Random Walk Model of Skin Permeation

Author

Listed:
  • H. Frederick Frasch

Abstract

A new mathematical model for permeability of chemicals in aqueous vehicle through skin is presented. The rationale for this model is to represent diffusion by its fundamental molecular mechanism, i.e., random thermal motion. Diffusion is modeled as a two‐dimensional random walk through the biphasic (lipid and corneocyte) stratum corneum (SC). This approach permits calculations of diffusion phenomena in a morphologically realistic SC structure. Two concepts are key in the application of the model to the prediction of steady‐state skin permeability coefficients: ``effective diffusivity'' and ``effective path length,'' meaning the diffusivity and thickness of a homogeneous membrane having identical permeation properties as the stratum corneum. Algebraic expressions for these two variables are developed as functions of the molecular weight and octanol‐water partition coefficient of the diffusing substance. Combining these with expressions for membrane‐vehicle partition coefficient and permeability of the aqueous epidermis enables the calculation of steady‐state skin permeability coefficients. The resulting four‐parameter algebraic model was regressed against the ``Flynn data base'' with excellent results (R2=0.84;SE=0.0076; F=154;N=94). The model provides insight into the contributions of stratum corneum diffusivity and effective path lengths to overall skin permeability and may prove useful in the prediction of non‐steady‐state diffusion phenomena.

Suggested Citation

  • H. Frederick Frasch, 2002. "A Random Walk Model of Skin Permeation," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 265-276, April.
  • Handle: RePEc:wly:riskan:v:22:y:2002:i:2:p:265-276
    DOI: 10.1111/0272-4332.00024
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/0272-4332.00024
    Download Restriction: no

    File URL: https://libkey.io/10.1111/0272-4332.00024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas E. McKone & Robert A. Howd, 1992. "Estimating Dermal Uptake of Nonionic Organic Chemicals from Water and Soil: I. Unified Fugacity‐Based Models for Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 12(4), pages 543-557, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. W. J. Riley & T. E. McKone & E. A. Cohen Hubal, 2004. "Estimating Contaminant Dose for Intermittent Dermal Contact: Model Development, Testing, and Application," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 73-85, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacob Krüse & Christel W. E. Verberk, 2008. "Modelling of systemic uptake of agrochemicals after dermal exposure; effects of formulation, application and exposure scenarios," Environment Systems and Decisions, Springer, vol. 28(1), pages 57-65, March.
    2. Michael R. Adams & Cynthia A. Hanna & Janet A. Mayernik & William M. Mendez, 1994. "Probabilistic Health Risk Assessment for Exposures to Estuary Sediments and Biota Contaminated with Polychlorinated Biphenyls, Polychlorinated Terphenyls and Other Toxic Substances," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 577-594, August.
    3. Mohammad S. Islam & Luhua Zhao & Joseph Zhou & Lilly Dong & James N. McDougal & Gordon L. Flynn, 1996. "Systemic Uptake and Clearance of Chloroform by Hairless Rats Following Dermal Exposure. I. Brief Exposure to Aqueous Solutions," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 349-357, June.
    4. W. J. Riley & T. E. McKone & E. A. Cohen Hubal, 2004. "Estimating Contaminant Dose for Intermittent Dermal Contact: Model Development, Testing, and Application," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 73-85, February.
    5. Kenneth T. Bogen, 2013. "Dermal Uptake of 18 Dilute Aqueous Chemicals: In Vivo Disappearance‐Method Measures Greatly Exceed In Vitro‐Based Predictions," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1334-1352, July.
    6. Jaspreet S. Gujral & Deborah M. Proctor & Steave H. Su & Joseph M. Fedoruk, 2011. "Water Adherence Factors for Human Skin," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1271-1280, August.
    7. Mark P. van Veen, 1996. "A General Model for Exposure and Uptake from Consumer Products," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 331-338, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:22:y:2002:i:2:p:265-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.