IDEAS home Printed from
   My bibliography  Save this article

Merging simulation and projection approaches to solve high‐dimensional problems with an application to a new Keynesian model


  • Lilia Maliar
  • Serguei Maliar


We introduce a numerical algorithm for solving dynamic economic models that merges stochastic simulation and projection approaches: we use simulation to approximate the ergodic measure of the solution, we cover the support of the constructed ergodic measure with a fixed grid, and we use projection techniques to accurately solve the model on that grid. The construction of the grid is the key novel piece of our analysis: we replace a large cloud of simulated points with a small set of “representative” points. We present three alternative techniques for constructing representative points: a clustering method, an ε‐distinguishable set method, and a locally‐adaptive variant of the ε‐distinguishable set method. As an illustration, we solve one‐ and multi‐agent neoclassical growth models and a large‐scale new Keynesian model with a zero lower bound on nominal interest rates. The proposed solution algorithm is tractable in problems with high dimensionality (hundreds of state variables) on a desktop computer.

Suggested Citation

  • Lilia Maliar & Serguei Maliar, 2015. "Merging simulation and projection approaches to solve high‐dimensional problems with an application to a new Keynesian model," Quantitative Economics, Econometric Society, vol. 6(1), pages 1-47, March.
  • Handle: RePEc:wly:quante:v:6:y:2015:i:1:p:1-47

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:6:y:2015:i:1:p:1-47. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.