IDEAS home Printed from https://ideas.repec.org/a/wly/povpop/v17y2025i3ne70025.html
   My bibliography  Save this article

Poverty Among Elderly in Indonesia: Extent, Determinants, and Policy Implications

Author

Listed:
  • Faharuddin Faharuddin

Abstract

This study investigates the extent and determinants of poverty among the elderly in Indonesia, a country facing rapid demographic aging with limited social protection coverage. Using pooled data from the National Socioeconomic Survey (Susenas) for the years 2018, 2020, and 2022, the analysis applies a binary logistic regression model to identify factors associated with elderly poverty. Results indicate that elderly individuals living in rural areas, without pension or health insurance, with limited education, or facing physical or emotional difficulties are significantly more vulnerable to poverty. Interestingly, contrary to common assumptions, elderly women and those living alone do not appear to be the most at risk. The study also highlights the persistent urban–rural poverty gap and the critical role of pensions in reducing household‐level poverty among older adults. Policy implications include expanding pension and health insurance coverage, investing in elderly friendly infrastructure, and promoting inclusive economic empowerment programs. The findings contribute to a deeper understanding of elderly poverty in middle‐income countries and offer insights for more targeted and equitable aging‐related policies. 本研究调查了印度尼西亚老年人贫困的程度及其决定因素。印度尼西亚是一个人口老龄化迅速且社会保障覆盖面有限的国家。本研究使用2018年、2020年和2022年国家社会经济调查(Susenas)的汇总数据, 采用二元逻辑回归模型识别与老年人贫困相关的因素。结果表明, 居住在农村地区、没有养老金或医疗保险、受教育程度有限或面临身体或情感障碍的老年人更容易陷入贫困。有趣的是, 与普遍的假设相反, 老年女性和独居者似乎并非面临最大风险的群体。本研究还强调了持续存在的城乡贫困差距以及养老金在减少老年人家庭贫困方面的关键作用。相关政策建议包括扩大养老金和医疗保险覆盖面、投资建设老年友好型基础设施以及推广包容性经济赋权项目。研究结果有助于加深对中等收入国家老年人贫困问题的理解, 并为制定更有针对性和更公平的老龄化相关政策提供参考。 Este estudio investiga el alcance y los determinantes de la pobreza entre las personas mayores en Indonesia, un país que enfrenta un rápido envejecimiento demográfico con una cobertura de protección social limitada. Utilizando datos agrupados de la Encuesta Socioeconómica Nacional (Susenas) de los años 2018, 2020 y 2022, el análisis aplica un modelo de regresión logística binaria para identificar los factores asociados con la pobreza en la tercera edad. Los resultados indican que las personas mayores que viven en zonas rurales, sin pensión ni seguro médico, con educación limitada o con dificultades físicas o emocionales son significativamente más vulnerables a la pobreza. Curiosamente, contrariamente a lo que se suele suponer, las mujeres mayores y las personas que viven solas no parecen ser las que corren mayor riesgo. El estudio también destaca la persistente brecha de pobreza entre zonas urbanas y rurales y el papel crucial de las pensiones en la reducción de la pobreza a nivel de hogar entre las personas mayores. Las implicaciones políticas incluyen la ampliación de la cobertura de pensiones y seguro médico, la inversión en infraestructura adaptada a las personas mayores y la promoción de programas inclusivos de empoderamiento económico. Los hallazgos contribuyen a una comprensión más profunda de la pobreza en la tercera edad en los países de ingresos medios y ofrecen perspectivas para políticas más específicas y equitativas relacionadas con el envejecimiento.

Suggested Citation

  • Faharuddin Faharuddin, 2025. "Poverty Among Elderly in Indonesia: Extent, Determinants, and Policy Implications," Poverty & Public Policy, John Wiley & Sons, vol. 17(3), September.
  • Handle: RePEc:wly:povpop:v:17:y:2025:i:3:n:e70025
    DOI: 10.1002/pop4.70025
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/pop4.70025
    Download Restriction: no

    File URL: https://libkey.io/10.1002/pop4.70025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:povpop:v:17:y:2025:i:3:n:e70025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1944-2858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.