Author
Listed:
- Gizem Acet Dönmez
- Bilge Eriş Dereli
Abstract
In‐work poverty is a prevalent phenomenon in many countries and creates significant challenges from various aspects. This study investigates the underlying factors of in‐work poverty utilizing Türkiye as a case study and using the latest available (2022) microdata from the Survey of Income and Living Conditions (SILC). It first measures the at risk of poverty or social exclusion rate (AROPE) among the working population, revealing that 22.13% of workers suffer from poverty and there is a considerable sectoral variation. Subsequently, the underlying demographic characteristics, along with job‐related and regional factors of in‐work poverty, are examined through multilevel logistic regression analysis. Among demographic characteristics, being older and having higher education levels are associated with lower probabilities of in‐work poverty, while household dependency raises this risk. Analyzing the association between in‐work poverty and job characteristics indicates that public sector employment and social security registration lower the probability of in‐work poverty. Furthermore, compared to the self‐employed, employers are much less likely to be poor, while employees are more vulnerable. Finally, living in a region with a higher GDP per capita lowers the probability of working poverty, whereas regions with higher Gini indices, unemployment rates, and Syrian refugee rates are associated with higher poverty risks. 在职贫困是许多国家普遍存在的现象, 并从不同方面带来了重大挑战。本研究以土耳其为例, 使用收入和生活条件调查(SILC)中最新的微观数据(2022), 调查了在职贫困的潜在因素。本研究首先衡量了劳动人口的贫困或社会排斥风险率(AROPE), 结果显示, 22.13%的劳动者陷入贫困, 且各部门之间存在相当大的差异。随后, 通过多层次逻辑回归分析, 研究了在职贫困的人口特征以及与工作相关的因素和区域因素。在人口统计特征中, 年龄较大和受过高等教育与“较低的在职贫困可能性”相关, 而家庭依赖性会增加这种风险。分析在职贫困与工作特征之间的关联表明, 公共部门就业和社会保障登记降低了在职贫困的可能性。此外, 与自雇人士相比, 雇主陷入贫困的可能性要小得多, 而雇员则更容易受到贫困的影响。最后, 生活在人均GDP较高的地区, 工作贫困的可能性则较低, 而在基尼系数较高、失业率较高以及叙利亚难民率较高的地区, 贫困风险较高。 La pobreza laboral es un fenómeno prevalente en muchos países y plantea importantes desafíos desde diversos puntos de vista. Este estudio investiga los factores subyacentes de la pobreza laboral, utilizando Turquía como caso de estudio y los microdatos más recientes disponibles (2022) de la Encuesta de Ingresos y Condiciones de Vida (SILC). En primer lugar, se mide la tasa de riesgo de pobreza o exclusión social (AROPE) entre la población activa, revelando que el 22,13% de los trabajadores se encuentra en situación de pobreza y que existe una considerable variación sectorial. Posteriormente, se examinan las características demográficas subyacentes, junto con los factores laborales y regionales de la pobreza laboral, mediante un análisis de regresión logística multinivel. Entre las características demográficas, la edad avanzada y un mayor nivel educativo se asocian con una menor probabilidad de pobreza laboral, mientras que la dependencia del hogar aumenta este riesgo. El análisis de la asociación entre la pobreza laboral y las características del empleo indica que el empleo en el sector público y la afiliación a la seguridad social reducen la probabilidad de pobreza laboral. Además, en comparación con los trabajadores por cuenta propia, los empleadores tienen una probabilidad mucho menor de ser pobres, mientras que los empleados son más vulnerables. Por último, vivir en una región con un PIB per cápita más alto reduce la probabilidad de pobreza laboral, mientras que las regiones con índices de Gini, tasas de desempleo y tasas de refugiados sirios más elevados se asocian con mayores riesgos de pobreza.
Suggested Citation
Gizem Acet Dönmez & Bilge Eriş Dereli, 2025.
"Multilevel Analysis of Factors Underlying in‐Work Poverty: Evidence From Türkiye,"
Poverty & Public Policy, John Wiley & Sons, vol. 17(2), June.
Handle:
RePEc:wly:povpop:v:17:y:2025:i:2:n:e70009
DOI: 10.1002/pop4.70009
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:povpop:v:17:y:2025:i:2:n:e70009. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1944-2858 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.