Author
Listed:
- Peifeng He
- Fujun Niu
- Tianchun Dong
- Jing Luo
- Chenglong Jiao
- Yunhui Huang
- Zekun Ding
- Wenji Su
Abstract
Embankment–bridge transition sections (EBTSs) suffer from diverse engineering diseases that have escalated into one of the most severe issues along the Qinghai‐Tibet Railway (QTR). Nevertheless, the causes and mechanisms of engineering diseases in EBTSs remain limited. This study employed a methodological approach to conduct field surveys in the Tuotuo River Basin in the hinterland of the Qinghai‐Tibet Plateau (QTP). Borehole investigations and nuclear magnetic resonance (NMR) techniques accurately determined the permafrost characteristics, enabling the correction of electromagnetic wave velocity and acquisition of resistivity threshold. Ground‐penetrating radar (GPR) and quasi‐3D electrical resistivity tomography (ERT) were combined to indicate permafrost resistivity above 200 Ω‐m. It reveals that the permafrost is relatively stable across a large area on the shaded side, whereas the permafrost degradation is more pronounced on the sunny side, where the maximum active layer thickness (ALT) reaches 5.2 m. Notable permafrost degradation and substantial increases in ALT were observed near the EBTS resulting from heat absorption and thermal erosion of the groundwater. Terrestrial laser scanning (TLS) captured time‐series deformation highlights the specific displacements of the EBTS, demonstrating that the displacement is the rotational behavior of wing walls. The severe heat absorption and groundwater thermal erosion around the EBTS result in permafrost degradation and the expansion of the thawing bulbs to increased structural deformation and even failure. It was shown that permafrost degradation, moisture influence, and heat transfer characteristics are the primary contributing factors to the disease's continued deterioration, and thus reinforcement measures for existing structures need to address these three issues. The mechanisms of disease development revealed in this paper provide new insights into EBTS dynamics for the EBTS design and maintenance in permafrost regions.
Suggested Citation
Peifeng He & Fujun Niu & Tianchun Dong & Jing Luo & Chenglong Jiao & Yunhui Huang & Zekun Ding & Wenji Su, 2025.
"Assessment of Diseases in Embankment–Bridge Transition Section With Methodological Detection Along the Qinghai‐Tibet Railway in Permafrost Regions,"
Permafrost and Periglacial Processes, John Wiley & Sons, vol. 36(3), pages 345-362, July.
Handle:
RePEc:wly:perpro:v:36:y:2025:i:3:p:345-362
DOI: 10.1002/ppp.2267
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:36:y:2025:i:3:p:345-362. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.