IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v12y2001i3p267-288.html
   My bibliography  Save this article

Measurement and theory of ploughing boulder movement

Author

Listed:
  • Colin K. Ballantyne

Abstract

Analysis of the characteristics, distribution and rate of movement of ploughing boulders reveals several attributes that throw light on the mechanism of boulder movement. Ploughing boulders occur only in areas of active solifluction, on frost‐susceptible soils with low plastic and liquid limits. During movement they rotate to adopt an alignment of least resistance. Excavations revealed thick ice lenses under the base of a boulder in winter, and emergent shear planes in frontal ridges. Rates of boulder movement average from zero to a few centimetres per year and are exponentially related to gradient. The differential thermal conductivity (diffusivity) of the boulder and surrounding soil implies that the seasonal freezing plane descends more rapidly through the boulder, causing ice‐lens growth at the boulder base; conversely, the thaw plane reaches the base of the boulder whilst the surrrounding soil is still frozen. A limit‐equilibrium model of boulder movement by gelifluction suggests that movement results from trapping of excess water under boulders during thaw, elevation of sub‐boulder porewater pressures to above‐hydrostatic levels and consequent reduction in shearing resistance at the base of the boulder. Movement is initiated by thaw of soil immediately downslope, but allows trapped water to escape, reducing porewater pressures and allowing stability to be regained. This model appears consistent with the observed characteristics, distribution and behaviour of ploughing boulders. Copyright © 2001 John Wiley & Sons, Ltd. Une analyse des caractéristiques, de la distribution et de la vitesse des mouvements de blocs laboureurs fait apparaître plusieurs éléments qui éclairent les mécanismes d'avancée des blocs. Les blocs laboureurs existent seulement dans des régions de solifluxion active, sur des sols susceptibles au gel et dont les limites de liquidité et de plasticité sont basses. Pendant les déplacements, ils pivotent pour adopter une position de moindre résistance à l'avancement. Des excavations révèlent, en hiver, l'existence de lentilles de glace épaisses sous la base des blocs et montrent la présence de plans de cisaillement émergeant dans les rides frontales. Les vitesses moyennes de mouvement sont comprises entre zéro et quelques centimètres par an et sont liées exponentiellement à la pente. La conductivité thermique différentielle (diffusivité) du bloc et du sol qui l'entoure implique que le plan de gel saisonnier descende plus rapidement au travers du bloc en causant la croissance de lentilles de glace à la base de celui‐ci; inversement le plan de dégel atteint la base du bloc alors que le sol voisin est encore gelé. Un modèle basé sur la limite de l'équilibre des blocs en mouvement par gélifluxion suggère que le mouvement résulte du captage de l'eau en excès sous les blocs pendant le dégel, de l'élévation de la pression des pores sous le bloc jusqu'à des niveaux supérieur à l'équilibre hydrostatique avec pour conséquence une réduction de la résistance au cisaillement à la base du bloc. Le mouvement débute par le dégel du sol immédiatement sous le bloc mais permet à l'eau enfermée d'échapper en réduisant la pression des pores ce qui restaure la stabilité. Ce modèle semble bien en accord avec les caractéristiques, la distribution et le comportement des blocs laboureurs. Copyright © 2001 John Wiley & Sons, Ltd.

Suggested Citation

  • Colin K. Ballantyne, 2001. "Measurement and theory of ploughing boulder movement," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 12(3), pages 267-288, September.
  • Handle: RePEc:wly:perpro:v:12:y:2001:i:3:p:267-288
    DOI: 10.1002/ppp.389
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.389
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:12:y:2001:i:3:p:267-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.