IDEAS home Printed from https://ideas.repec.org/a/wly/navlog/v21y1974i3p445-464.html
   My bibliography  Save this article

A general treatment of upper unbounded and bounded hitchcock problems

Author

Listed:
  • P. S. Dwyer

Abstract

This paper is designed to treat (a) the problem of the determination of the absolute minimum cost, with the associated assignments, when there is no limit, N, on the number of parcels available for shipment in a modified Hitchcock problem. This is accomplished with the use of a transformed cost matrix. C*, to which the so‐called transportation paradox does not apply. The general Hitchcock solution using C* gives the cost T*, which is the absolute minimum cost of the original problem, as well as sets of assignments which are readily transformed to give the general assignments of the original problem. The sum of these latter assignments gives the value of Nu, the unbounded N for minimum cost. In addition, this paper is designed to show (b) how the method of reduced matrices may be used, (c) how a particular Hitchcock solution can be used to determine a general solution so that one solution using C* can provide the general answer, (d) how the results may be modified to apply to problems with fixed N, and hence (e) to determine the function of the decreasing T as N approaches Nu, and finally (f) to provide a treatment when the supplies at origin i and/or the demands at destination j, are bounded.

Suggested Citation

  • P. S. Dwyer, 1974. "A general treatment of upper unbounded and bounded hitchcock problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 21(3), pages 445-464, September.
  • Handle: RePEc:wly:navlog:v:21:y:1974:i:3:p:445-464
    DOI: 10.1002/nav.3800210307
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.3800210307
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.3800210307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navlog:v:21:y:1974:i:3:p:445-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1931-9193 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.