IDEAS home Printed from https://ideas.repec.org/a/wly/navlog/v18y1971i4p503-510.html
   My bibliography  Save this article

Optimal location of a single service center of certain types

Author

Listed:
  • K. P. K. Nair
  • R. Chandrasekaran

Abstract

Hakimi has considered the problem of finding an optimal location for a single service center, such as a hospital or a police station. He used a graph theoretic model to represent the region being serviced. The communities are represented by the nodes while the road network is represented by the ares of the graph. In his work, the objective is one of minimizing the maximum of the shortest distances between the vertices and the service center. In the present work, the region being serviced is represented by a convex polygon and communities are spread over the entire region. The objective is to minimize the maximum of Euclidian distances between the service center and any point in the polygon. Two methods of solution presented are (i) a geometric method, and (ii) a quadratic programming formulation. Of these, the geometric method is simpler and more efficient. It is seen that for a class of problems, the geometric method is well suited and very efficient while the graph theoretic method, in general, will give only approximate solutions in spite of the increased efforts involved. But, for a different class of problems, the graph theoretic approach will be more appropriate while the geometric method will provide only approximate solutions though with ease. Finally, some feasible applications of importance are outlined and a few meaningful extensions are indicated.

Suggested Citation

  • K. P. K. Nair & R. Chandrasekaran, 1971. "Optimal location of a single service center of certain types," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 18(4), pages 503-510, December.
  • Handle: RePEc:wly:navlog:v:18:y:1971:i:4:p:503-510
    DOI: 10.1002/nav.3800180409
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.3800180409
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.3800180409?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. W. Hamacher & S. Nickel, 1995. "Restricted planar location problems and applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 967-992, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navlog:v:18:y:1971:i:4:p:503-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1931-9193 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.