IDEAS home Printed from https://ideas.repec.org/a/wly/navlog/v14y1967i3p391-398.html
   My bibliography  Save this article

A deterministic inventory model for reparable items

Author

Listed:
  • David A. Schrady

Abstract

A reparable inventory system has two distinct inventories within it—the inventory of items ready‐for‐issue and the inventory of carcasses available for repair. A reparable item is usually rebuilt upon failure, but the scrap rate in the repair process is generally positive. Consequently, new items must be procured from time to time to replace those item: which were scrapped. The ready‐for‐issue inventory has two input sources—procurement and repair, This paper develops a deterministic inbentory model for the reparable inventory system, and determines the optimal procurement and repair quantities.

Suggested Citation

  • David A. Schrady, 1967. "A deterministic inventory model for reparable items," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 14(3), pages 391-398.
  • Handle: RePEc:wly:navlog:v:14:y:1967:i:3:p:391-398
    DOI: 10.1002/nav.3800140310
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.3800140310
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.3800140310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nita H. Shah & Dushyantkumar G. Patel & Digeshkumar B. Shah, 2018. "EPQ model for returned/reworked inventories during imperfect production process under price-sensitive stock-dependent demand," Operational Research, Springer, vol. 18(2), pages 343-359, July.
    2. B. C. Giri & M. Masanta, 2022. "A closed-loop supply chain model with uncertain return and learning-forgetting effect in production under consignment stock policy," Operational Research, Springer, vol. 22(2), pages 947-975, April.
    3. Hsieh, Chung-Chi & Lathifah, Artya, 2022. "Ordering and waste reuse decisions in a make-to-order system under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1290-1303.
    4. Biswajit Sarkar & Mehran Ullah & Seok-Beom Choi, 2019. "Joint Inventory and Pricing Policy for an Online to Offline Closed-Loop Supply Chain Model with Random Defective Rate and Returnable Transport Items," Mathematics, MDPI, vol. 7(6), pages 1-20, June.
    5. Ruud H. Teunter, 2001. "Economic ordering quantities for recoverable item inventory systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(6), pages 484-495, September.
    6. Bimal Kumar Mawandiya & J. K. Jha & Jitesh J. Thakkar, 2020. "Optimal production-inventory policy for closed-loop supply chain with remanufacturing under random demand and return," Operational Research, Springer, vol. 20(3), pages 1623-1664, September.
    7. Chayanika Rout & Ravi Shankar Kumar & Debjani Chakraborty & Adrijit Goswami, 2019. "An EPQ model for deteriorating items with imperfect production, inspection errors, rework and shortages : a type-2 fuzzy approach," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 657-688, September.
    8. Ashayeri, J. & Heuts, R.M.J. & Jansen, A. & Szczerba, B., 1994. "Inventory management of repairable service parts for personal computers : A case study," Other publications TiSEM 28578c62-2e4d-4345-929f-a, Tilburg University, School of Economics and Management.
    9. Smita Rani & Rashid Ali & Anchal Agarwal, 2019. "Fuzzy inventory model for deteriorating items in a green supply chain with carbon concerned demand," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 91-122, March.
    10. Mahmoudi, Monirehalsadat & Parviziomran, Irandokht, 2020. "Reusable packaging in supply chains: A review of environmental and economic impacts, logistics system designs, and operations management," International Journal of Production Economics, Elsevier, vol. 228(C).
    11. Hsien-Jen Lin, 2015. "Two-echelon stochastic inventory system with returns and partial backlogging," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(6), pages 966-975, April.
    12. Taleizadeh, Ata Allah & Moshtagh, Mohammad Sadegh, 2019. "A consignment stock scheme for closed loop supply chain with imperfect manufacturing processes, lost sales, and quality dependent return: Multi Levels Structure," International Journal of Production Economics, Elsevier, vol. 217(C), pages 298-316.
    13. S. Malolan & M. Mathirajan & M. K. Tiwari, 2020. "A methodology for determining the optimal reverse flow capacities and the breakeven period for a multi products-component remanufacturing problem of an OEM," Operations Management Research, Springer, vol. 13(3), pages 233-248, December.
    14. Pinky Saxena & S. R. Singh & Isha Sangal, 2016. "A Multi Item Integrated Inventory Model with Reparability and Manufacturing of Fresh Products," Modern Applied Science, Canadian Center of Science and Education, vol. 10(7), pages 1-74, July.
    15. Gökbayrak, Esra & Kayış, Enis, 2023. "Single item periodic review inventory control with sales dependent stochastic return flows," International Journal of Production Economics, Elsevier, vol. 255(C).
    16. Amrina Kausar & Ahmad Hasan & Chandra K. Jaggi, 2023. "Sustainable inventory management for a closed-loop supply chain with learning effect and carbon emission under the multi-shipment policy," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1738-1755, October.
    17. Meherishi, Lavanya & Narayana, Sushmita A. & Ranjani, K.S., 2021. "Integrated product and packaging decisions with secondary packaging returns and protective packaging management," European Journal of Operational Research, Elsevier, vol. 292(3), pages 930-952.
    18. Hallak, Bassam K. & Nasr, Walid W. & Jaber, Mohamad Y., 2021. "Re-ordering policies for inventory systems with recyclable items and stochastic demand – Outsourcing vs. in-house recycling," Omega, Elsevier, vol. 105(C).
    19. Adel A. Alamri, 2023. "A Sustainable Closed-Loop Supply Chains Inventory Model Considering Optimal Number of Remanufacturing Times," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    20. Sumit Maheshwari & Amrina Kausar & Ahmad Hasan & Chandra K. Jaggi, 2023. "Sustainable inventory model for a three-layer supply chain using optimal waste management," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 216-235, March.
    21. Lucas Dias Condeixa & Pierry Silva & Diego Moah & Brenda Farias & Adriana Leiras, 2022. "Evaluating cost impacts on reverse logistics using an Economic Order Quantity (EOQ) model with environmental and social considerations," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 921-940, September.
    22. Ullah, Mehran & Sarkar, Biswajit, 2020. "Recovery-channel selection in a hybrid manufacturing-remanufacturing production model with RFID and product quality," International Journal of Production Economics, Elsevier, vol. 219(C), pages 360-374.
    23. M. Masanta & B. C. Giri, 2022. "A closed-loop supply chain model with learning effect, random return and imperfect inspection under price- and quality-dependent demand," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 1094-1115, September.
    24. Felix T.S. Chan & Nan Li & S.H. Chung & Mozafar Saadat, 2017. "Management of sustainable manufacturing systems-a review on mathematical problems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1210-1225, February.
    25. Sanni, S. & Jovanoski, Z. & Sidhu, H.S., 2020. "An economic order quantity model with reverse logistics program," Operations Research Perspectives, Elsevier, vol. 7(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navlog:v:14:y:1967:i:3:p:391-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1931-9193 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.