Sparse Ensemble Matters: Evidence From Unemployment Rate Forecasting
Author
Abstract
Suggested Citation
DOI: 10.1002/for.3281
Download full text from publisher
References listed on IDEAS
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Cheng, Ka Ming, 2022. "Doubts on natural rate of unemployment: Evidence and policy implications," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 230-239.
- de Menezes, Lilian M. & W. Bunn, Derek & Taylor, James W., 2000. "Review of guidelines for the use of combined forecasts," European Journal of Operational Research, Elsevier, vol. 120(1), pages 190-204, January.
- Christos Katris, 2020. "Prediction of Unemployment Rates with Time Series and Machine Learning Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 673-706, February.
- Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
- Ang, Andrew & Bekaert, Geert & Wei, Min, 2007.
"Do macro variables, asset markets, or surveys forecast inflation better?,"
Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
- Andrew Ang & Geert Bekaert & Min Wei, 2005. "Do Macro Variables, Asset Markets or Surveys Forecast Inflation Better?," NBER Working Papers 11538, National Bureau of Economic Research, Inc.
- Andrew Ang & Geert Bekaert & Min Wei, 2006. "Do macro variables, asset markets, or surveys forecast inflation better?," Finance and Economics Discussion Series 2006-15, Board of Governors of the Federal Reserve System (U.S.).
- Ahmed, M. Iqbal & Cassou, Steven P., 2021. "Asymmetries in the effects of unemployment expectation shocks as monetary policy shifts with economic conditions," Economic Modelling, Elsevier, vol. 100(C).
- Oded Izraeli & Kevin J. Murphy, 2003. "The effect of industrial diversity on state unemployment rate and per capita income," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 37(1), pages 1-14, February.
- Luis Gil‐Alana & Antonio Moreno & Fernando Pérez de Gracia, 2012.
"Exploring Survey‐Based Inflation Forecasts,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(6), pages 524-539, September.
- Luis Gil-Alana & Antonio Moreno & Fernando Pérez de Gracia, 2011. "Exploring Survey-Based Inflation Forecasts," Faculty Working Papers 05/11, School of Economics and Business Administration, University of Navarra.
- Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
- Mei, Ziwei & Shi, Zhentao, 2024. "On LASSO for high dimensional predictive regression," Journal of Econometrics, Elsevier, vol. 242(2).
- Beverly, Josh & Stewart, Shamar L. & Neill, Clinton L., 2024. "What drives labor force participation rate variability? The case of West Virginia," Economic Modelling, Elsevier, vol. 140(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Magdalena Grothe & Aidan Meyler, 2018.
"Inflation Forecasts: Are Market-Based and Survey-Based Measures Informative?,"
International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 9(1), pages 171-188, January.
- Grothe, Magdalena & Meyler, Aidan, 2015. "Inflation forecasts: Are market-based and survey-based measures informative?," MPRA Paper 66982, University Library of Munich, Germany.
- Meyler, Aidan & Grothe, Magdalena, 2015. "Inflation forecasts: Are market-based and survey-based measures informative?," Working Paper Series 1865, European Central Bank.
- Little, Andrew T. & Moore, Don A & Augenblick, Ned & Backus, Matthew, 2025. "Assumptions, Disagreement, and Overprecision: Theory and Evidence," OSF Preprints mnv4k_v1, Center for Open Science.
- Gao, Jiti & Peng, Bin & Yan, Yayi, 2025.
"Time-varying vector error-correction models: Estimation and inference,"
Journal of Econometrics, Elsevier, vol. 251(C).
- Jiti Gao & Bin Peng & Yayi Yan, 2023. "Time-Varying Vector Error-Correction Models: Estimation and Inference," Papers 2305.17829, arXiv.org.
- Jiti Gao & Bin Peng & Yayi Yan, 2023. "Time-Varying Vector Error-Correction Models: Estimation and Inference," Monash Econometrics and Business Statistics Working Papers 11/23, Monash University, Department of Econometrics and Business Statistics.
- James M. Nason & Gregor W. Smith, 2021.
"Measuring the slowly evolving trend in US inflation with professional forecasts,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
- James M. Nason & Gregor W. Smith, 2013. "Measuring The Slowly Evolving Trend In Us Inflation With Professional Forecasts," Working Paper 1316, Economics Department, Queen's University.
- James M. Nason & Gregor W. Smith, 2014. "Measuring the Slowly Evolving Trend in US Inflation with Professional Forecasts," CAMA Working Papers 2014-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Nason, Jason M. & Smith, Gregor W., 2013. "Measuring the Slowly Evolving Trend in US Inflation with Professional Forecasts," Queen's Economics Department Working Papers 274641, Queen's University - Department of Economics.
- Baumann, Ursel & Darracq Pariès, Matthieu & Westermann, Thomas & Riggi, Marianna & Bobeica, Elena & Meyler, Aidan & Böninghausen, Benjamin & Fritzer, Friedrich & Trezzi, Riccardo & Jonckheere, Jana & , 2021. "Inflation expectations and their role in Eurosystem forecasting," Occasional Paper Series 264, European Central Bank.
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Ganics, Gergely & Odendahl, Florens, 2021.
"Bayesian VAR forecasts, survey information, and structural change in the euro area,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
- Gergely Ganics & Florens Odendahl, 2019. "Bayesian VAR Forecasts, Survey Information and Structural Change in the Euro Area," Working papers 733, Banque de France.
- Gergely Ganics & Florens Odendahl, 2019. "Bayesian VAR forecasts, survey information and structural change in the euro area," Working Papers 1948, Banco de España.
- Diebold, Francis X. & Shin, Minchul, 2019.
"Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially-Egalitarian Lasso and its Derivatives," NBER Working Papers 24967, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially Egalitarian Lasso and its Derivatives," PIER Working Paper Archive 18-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Aug 2018.
- Barbara Rossi, 2021.
"Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them,"
Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Jakub Nowotarski & Rafał Weron, 2015.
"Computing electricity spot price prediction intervals using quantile regression and forecast averaging,"
Computational Statistics, Springer, vol. 30(3), pages 791-803, September.
- Jakub Nowotarski & Rafal Weron, 2013. "Computing electricity spot price prediction intervals using quantile regression and forecast averaging," HSC Research Reports HSC/13/12, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Chengwang Liao & Ziwei Mei & Zhentao Shi, 2024. "Nickell Meets Stambaugh: A Tale of Two Biases in Panel Predictive Regressions," Papers 2410.09825, arXiv.org.
- Nibbering, Didier & Paap, Richard & van der Wel, Michel, 2018.
"What do professional forecasters actually predict?,"
International Journal of Forecasting, Elsevier, vol. 34(2), pages 288-311.
- Didier Nibbering & Richard Paap & Michel van der Wel, 2015. "What Do Professional Forecasters Actually Predict?," Tinbergen Institute Discussion Papers 15-095/III, Tinbergen Institute, revised 13 Oct 2017.
- Gibbs, Christopher G. & Vasnev, Andrey L., 2024.
"Conditionally optimal weights and forward-looking approaches to combining forecasts,"
International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
- Christopher G. Gibbs & Andrey L. Vasnev, 2017. "Conditionally Optimal Weights and Forward-Looking Approaches to Combining Forecasts," Discussion Papers 2017-10, School of Economics, The University of New South Wales.
- Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017.
"Applying a microfounded-forecasting approach to predict Brazilian inflation,"
Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
- Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2016. "Applying a Microfounded-Forecasting Approach to Predict Brazilian Inflation," Working Papers Series 436, Central Bank of Brazil, Research Department.
- Thilo Reinschlussel & Martin C. Arnold, 2024. "Information-Enriched Selection of Stationary and Non-Stationary Autoregressions using the Adaptive Lasso," Papers 2402.16580, arXiv.org, revised Jul 2024.
- Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2022.
"Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity,"
Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 29-50,
Emerald Group Publishing Limited.
- Kajal Lahiri & Huaming Peng & Xuguang Sheng, 2015. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," CESifo Working Paper Series 5468, CESifo.
- Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2021. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Working Papers 2021-005, The George Washington University, The Center for Economic Research.
- Kajal Lahiri & Huaming Peng & Xuguang Sheng, 2020. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," CESifo Working Paper Series 8810, CESifo.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:6:p:2002-2016. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i6p2002-2016.html